Skip to main content
Log in

A comparative study of the bonding in heteroatom analogues of benzene

  • Published:
Theoretica chimica acta Aims and scope Submit manuscript

Summary

Inorganic benzenes X3Y3H6 are investigated, with X and Y chosen from Zn, B, Al, Ga, C, Si, Ge, N, P, As, O, and S such that there are a total of 6 π electrons. Geometries and bond orders are used to qualitatively assess the degree of aromatic π bonding in these species. Bond orders are extracted from the CI density matrix over localized molecular orbitals, using methods pioneered by Ruedenberg. Second row elements C, N, O are found to be more effective at this bonding. The aromatic bonding is poorest when X and Y have a large electronegativity difference.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Power PP (1990) J Organomet Chem 400:49

    Google Scholar 

  2. Lagowski JJ (1977) Coord Chem Rev 22:185

    Google Scholar 

  3. Barton TJ, Banasiak D (1977) J Am Chem Soc 99:5199

    Google Scholar 

  4. Barton TJ, Burns GT (1978) J Am Chem Soc 100:5246

    Google Scholar 

  5. Baldridge KK, Gordon MS (1988) J Am Chem Soc 110:4024

    Google Scholar 

  6. Baldridge KK, Gordon MS (1984) J Organomet Chem 271:369

    Google Scholar 

  7. Clabo DA, Schaefer HF (1986) J Chem Phys 84:1664

    Google Scholar 

  8. Nagase S, Teramae H, Kudo T (1987) J Chem Phys 86:4513

    Google Scholar 

  9. Nagase S, Kudo T, Aoki M (1985) J Chem Soc, Chem Commun 1121

  10. Baldridge KK, Boatz JA, Koseki S, Gordon MS (1987) Theoretical studies of silicon chemistry. in: Strauss HL, Babcock GT, Moore CB (eds) Ann Rev Phys Chem, Vol 38. Annual Reviews, Inc, Palo Alto, CA, p 211

    Google Scholar 

  11. Gordon MS (1986) Theoretical studies of multiple bonding to silicon. in: Liebman JF, Greenberg A (eds) Molecular structure and energetics, Vol 1. VCH Publ, Weinheim, p 101

    Google Scholar 

  12. Raabe G, Michl J (1985) Chem Rev 85:419

    Google Scholar 

  13. Edmiston C, Ruedenberg K (1966) Localized atomic and molecular orbitals. in: Löwdin PO (ed) Quantum theory of atoms, molecules, and the solid state. Academic Press, New York, p 263

    Google Scholar 

  14. England W, Salmon LS, Ruedenberg K (1971) Localized molecular orbitals: A bridge between chemical intuition and molecular quantum mechanics. in: Fortschritte der Chemischen Forschung, Vol 23. Springer-Verlag, New York, p 31

    Google Scholar 

  15. England W, Gordon MS (1969) J Am Chem Soc 91:6864

    Google Scholar 

  16. Boyd RJ, Choi SC, Hale CC (1984) Chem Phys Lett 112:136

    Google Scholar 

  17. Dias HVR, Power PP (1987) Angew Chem, Int Ed Engl 99:1320

    Google Scholar 

  18. Dias HVR, Power PP (1989) J Am Chem Soc 111:144

    Google Scholar 

  19. Power P (1990) Angew Chem, Int Ed Engl 29:449

    Google Scholar 

  20. Waggoner KM, Hope H, Power PP (1988) Angew Chem, Int Ed Engl 27:1699

    Google Scholar 

  21. Waggoner KM, Power PP (1991) J Am Chem Soc 113:3385

    Google Scholar 

  22. Hope H, Pestana DC, Power PP (1991) Angew Chem, Int Ed Engl 30:691

    Google Scholar 

  23. Fink WH, Richards JC (1991) J Am Chem Soc 113:3393

    Google Scholar 

  24. Olmstead MM, Power PP, Shoner SC (1991) J Am Chem Soc 113:3379

    Google Scholar 

  25. Noltes JG, Boersma J (1968) J Organomet Chem 12:425

    Google Scholar 

  26. Coates GE, Ridley D (1966) J Chem Soc A 1064

  27. Gorrell IB, Looney A, Parkin G, Rheingold AL (1990) J Am Chem Soc 112:4068

    Google Scholar 

  28. Spanhel L, Anderson MA (1991) J Am Chem Soc 113:2826

    Google Scholar 

  29. Schmidt MW, Baldridge KK, Boatz JA, Jensen JH, Koseki, S, Gordon MS, Nguyen KA, Windus TL, Elbert ST (1990) QCPE Bull 10:52

    Google Scholar 

  30. Contact MISCHMID@VM1.NODAK.EDU concerning this program.

  31. B-O, Al-S: Stevens WJ, Basch H, Krauss M (1984) J Chem Phys 81:6026

    Google Scholar 

  32. Zn-Ge: Stevens WJ, Basch H, Krauss M, Jasien PG submitted to Can J Chem

  33. Ditchfield R, Hehre WJ, Pople JA (1971) J Chem Phys 54:724

    Google Scholar 

  34. standardd polarization exponents were used: B=0.6, C=N=O=0.8, Al=0.325, Si=0.395, P=0.55, S=0.65, Ga=0.207, Ge=0.246, As=0.293

  35. B: Binkley JS, Pople JA (1976) J Chem Phys 68:879

    Google Scholar 

  36. C, N, O: Hariharan PC, Pople JA (1973) Theoret Chim Acta 28:213

    Google Scholar 

  37. Al, P, S: Francl MM, Pietro WJ, Hehre WJ, Binkley JS, Pople JA, Gordon MS, DeFrees DJ, Pople JA (1982) J Chem Phys 77:3654

    Google Scholar 

  38. Si: Gordon MS (1980) Chem Phys Lett 76:163

    Google Scholar 

  39. Ga, Ge, As: Huzinaga S (1984) Gaussian basis sets for molecular calculations. Elsevier, Amsterdam

    Google Scholar 

  40. Ruedenberg K, Schmidt MW, Gilbert MM, Elbert ST (1982) Chem Phys 71:41, 51, 65

    Google Scholar 

  41. Edmiston C, Ruedenberg K (1963) Rev Mod Phys 35:457

    Google Scholar 

  42. Elbert ST, Cheung LM, Ruedenberg K (1980) National Resource for Computations in Chemistry Software Catalog, program QG01

  43. Feller DF, Schmidt MW, Ruedenberg K (1982) J Am Chem Soc 104:960

    Google Scholar 

  44. Harmony MD, Laurie VW, Kuczkowski RL, Schwendeman RH, Ramsay DA, Lovas FJ, Lafferty WJ, Maki AG (1979) J Phys Chem Ref Data 8:630

    Google Scholar 

  45. Schmidt MW, Truong PN, Gordon MS (1987) J Am Chem Soc 109:5217

    Google Scholar 

  46. Bartell LS, Higgenbotham HK (1965) J Chem Phys 42:851

    Google Scholar 

  47. Wiberg N, Wagner G, Müller G (1985) Angew Chem, Int Ed Engl 24:229

    Google Scholar 

  48. Lazroq M, Escudie J, Couret C, Satgé J, Dräger M, Dammel R (1988) Angew Chem, Int Ed Engl 27:828

    Google Scholar 

  49. Mayer H, Baum G, Massa W, Berndt A (1988) Angew Chem, Int Ed Engl 99:790

    Google Scholar 

  50. West R (1987) Angew Chem, Int Ed Engl 26:1201

    Google Scholar 

  51. Snow JT, Murakami S, Masamune S, Williams DJ (1984) Tetrahedron Lett 25:4191

    Google Scholar 

  52. Goldberg D, Hitchcock PB, Lappert MF, Thomas KN, Thorne AJ, Haaland A, Schilling BER (1986) Chem Soc, Dalton Trans 2387

  53. Hehre WJ, Ditchfield R, Radom L, Pople JA (1970) J Am Chem Soc 92:4796

    Google Scholar 

  54. Coulson CA (1961) Valence. Oxford Univ Press, London, p 267

    Google Scholar 

  55. Pauling L (1948) Nature of the chemical bond, 2nd ed. Cornell Univ Press, Ithaca NY, p 174

    Google Scholar 

  56. Streitweiser AJ (1961) MO theory for organic chemists. Wiley, New York, p 168

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Prof. Klaus Ruedenberg

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsunaga, N., Cundari, T.R., Schmidt, M.W. et al. A comparative study of the bonding in heteroatom analogues of benzene. Theoret. Chim. Acta 83, 57–68 (1992). https://doi.org/10.1007/BF01113243

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01113243

Key words

Navigation