Skip to main content
Log in

Electronic structure and optical spectra of transition metal complexes by the effective Hamiltonian method

  • Published:
Theoretica chimica acta Aims and scope Submit manuscript

Summary

A semiempirical effective Hamiltonian treatment is proposed for transition metal complexes, taking into accountd-electron correlations, weak covalency of the metal-ligand bonds and the electronic structure of the ligand sphere. The technique uses the variation wave function which differs from the usual Hartree-Fock antisymmetrized product of molecular orbitals extended over the whole complex. The scheme is implemented and parameters describing the metal-ligand interactions are adjusted to reproduced-d-excitation spectra of a number of octahedral MF 4−6 (M=Mn, Fe, Co, Ni) anions, Mn(FH) 2+6 cation, CoCl 4−6 anion, and a tetrahedral CoCl 2−4 anion. The values of the parameters are reasonable, thus confirming the validity of the proposed scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bethe HA (1972) Ann d Phys 3:133

    Google Scholar 

  2. Jorgensen CK (1971) Modern aspects of ligand field theory. North-Holland, Amsterdam

    Google Scholar 

  3. Sviridov DT, Smirnov YuF (1977) Theory of the optical spectra of transition metal ions. Nauka, Moscow (in Russian)

    Google Scholar 

  4. Ballhausen CJ (1962) Introduction to ligand field theory. McGraw-Hill, NY

    Google Scholar 

  5. Abragam A, Bleaney B (1970) Electron paramagnetic resonance of transition ions. Clarendon Press, Oxford

    Google Scholar 

  6. Lever ABP (1986) Inorganic electronic spectroscopy. Elsevier, Amsterdam

    Google Scholar 

  7. Roothaan CCJ (1951) Rev Mod Phys 23:69

    Google Scholar 

  8. Bobrowicz FW, Goddard WA III (1977) in: Schaefer HF III (ed) Methods of electronic structure theory. Plenum Press, NY, p 79

    Google Scholar 

  9. Schilling JB, Goddard WA III, Beauchamp JL (1986) J Am Chem Soc 108:582

    Google Scholar 

  10. Schilling JB, Goddard WA III, Beauchamp JL (1987) J Phys Chem 91:5616

    Google Scholar 

  11. Schilling JB, Goddard WA III, Beauchamp JL (1987) J Am Chem Soc 109:5565

    Google Scholar 

  12. Newton JE, Hall MB (1984) Inorg Chem 23:4627

    Google Scholar 

  13. Newton JE, Hall MB (1985) Inorg Chem 24:2573

    Google Scholar 

  14. Pierloot K, Vanquickenborne LG (1990) J Chem Phys 93:4154

    Google Scholar 

  15. Rosi M, Bauschlicher CW Jr, Langhoff SR, Partridge H (1990) J Phys Chem 94:8656

    Google Scholar 

  16. Morokuma K (1990) Inorg Chem 29:3110

    Google Scholar 

  17. Filatov MJ, Gritsenko OV, Zhidomirov GM (1987) Theor Chim Acta 72:211

    Google Scholar 

  18. Blyholder G, Head J, Ruette F (1982) Theor Chim Acta 60:429

    Google Scholar 

  19. Zerner MC, Loew GH, Kirchner RF, Mueller-Westerhoff UT (1980) J Am Chem Soc 102:589

    Google Scholar 

  20. Edwards WD, Weiner B, Zerner MC (1988) J Phys Chem 92:6188

    Google Scholar 

  21. Edwards WD, Weiner B, Zerner MC (1986) J Am Chem Soc 108:2196

    Google Scholar 

  22. Kotzian M, Rösch N, Schröder H, Zerner MC (1989) J Am Chem Soc 111:7687

    Google Scholar 

  23. Böhm MC, Gleiter R (1980) Theor Chim Acta 57:315

    Google Scholar 

  24. Böhm MC (1981) Theor Chim Acta 60:233

    Google Scholar 

  25. Beletskii IP, Yatsimirskii KB (1985) Teor i Eksp Khimia 21:1 (in Russian)

    Google Scholar 

  26. Kon'kov KA, Zhidomirov GM, Khelskov VI, Kopranenkov VN, Ivanov YuV (1989) ibidi 25:471 (in Russian)

    Google Scholar 

  27. Bacon AD, Zerner MC (1979) Theor Chim Acta 53:21

    Google Scholar 

  28. Zülike L (1973) Quantenchemie. Verlag der Wissenschaften, Berlin

    Google Scholar 

  29. Clack DW, Hush NS, Yandle SR (1972) J Chem Phys 57:3503

    Google Scholar 

  30. Harrison WA (1990) Electronic structure and the properties of solids. Freeman, San Francisco

    Google Scholar 

  31. Tchougreeff AL, Misurkin IA (1989) Chem Phys 133:77

    Google Scholar 

  32. Löwdin PO (1966) in: Wilcox CH (ed) Perturbation theory and its application in quantum mechanics. Wiley, NY, p 255

    Google Scholar 

  33. McWeeny R, Sutcliffe BT (1969) Methods of molecular quantum mechanics. Academic Press, London

    Google Scholar 

  34. Hubbard J, Rimmer DE, Hopgood FRA (1966) Proc Phys Soc 88:13

    Google Scholar 

  35. Bogolyubov NN (1970) Selected papers, vol 2, Naukova Dumka, Kiev (in Russian)

    Google Scholar 

  36. Parr RG, Ellison FO, Lykos PG (1956) J Chem Phys 24:1106

    Google Scholar 

  37. Pople JA, Beveridge DL (1970) Approximate molecular orbital theory. McGraw-Hill, NY

    Google Scholar 

  38. Slater JC (1960) Quantum theory of atomic structure, Vol 1. McGraw-Hill, NY

    Google Scholar 

  39. Di Sipio L, Tondello E, De Michelis G, Oleari L (1971) Chem Phys Lett 11:287

    Google Scholar 

  40. Soudackov AV (1991) PhD Thesis, Karpov Phys Chem Institute, Moscow, USSR (in Russian)

    Google Scholar 

  41. Böhm M, Gleiter R (1981) Theor Chim Acta 59:127

    Google Scholar 

  42. Serafini A, Savariault JM, Cassoux P, Labarre JF (1975) Theor Chim Acta 36:241

    Google Scholar 

  43. Serafini A, Pelissier M, Savariault JM, Cassoux P, Labarre JF (1975) Theor Chim Acta 39:229

    Google Scholar 

  44. Hilal R (1985) Int J Quantum Chem 28:877

    Google Scholar 

  45. Moore CE (1952) Atomic energy levels. Circular of the National Bureau of Standards 467, Vol 2

  46. Bingham RC, Dewar MJS, Low DH (1975) J Am Chem Soc 97:1285

    Google Scholar 

  47. Barraclough CG, Cockman RW, O'Donnell TA, Snare MJ (1988) Inorg Chem 27:4504

    Google Scholar 

  48. Ferguson J, Wood DL, Knox K (1963) J Chem Phys 39:881

    Google Scholar 

  49. Cotton FA, Goodgame DML, Goodgame M (1961) J Am Chem Soc 83:4690

    Google Scholar 

  50. Moscowitz JW, Hollister C, Hornback CJ (1970) J Chem Phys 53:2570

    Google Scholar 

  51. Hillier IH, Kendrick J, Mabbs FE, Garner CD (1976) J Am Chem Soc 98:395

    Google Scholar 

  52. Allen GC, Clack DW (1970) J Chem Soc A:2668

    Google Scholar 

  53. Sutton LE (ed) (1958) Tables of interatomic distances and configurations in molecules and ions. Chemical Society, London

    Google Scholar 

  54. Johansen H, Andersen NK (1986) Mol Phys 58:965

    Google Scholar 

  55. Shashkin SY, Goddard WA III (1986) Phys Rev B 33:1353

    Google Scholar 

  56. Ng B, Newman DJ (1985) J Chem Phys 83:1758

    Google Scholar 

  57. Ng B, Newman DJ (1987) J Chem Phys 87:7096

    Google Scholar 

  58. Ng B, Newman DJ (1986) Chem Phys Lett 130:410

    Google Scholar 

  59. Janssen GJM, Nieuwpoort WC (1988) Int J Quantum Chem Symp 22:679

    Google Scholar 

  60. Ohanessian G, Goddard WA III (1990) Acc Chem Res 23:386

    Google Scholar 

  61. Schäffer CE, Jorgensen CK (1965) Mol Phys 9:401

    Google Scholar 

  62. Schäffer CE (1968) Struct and Bond 5:68

    Google Scholar 

  63. Schäffer CE (1970) Pure and Appl Chem 24:361

    Google Scholar 

  64. Woolley RG (1981) Mol Phys 42:703

    Google Scholar 

  65. Gerloch M, Woolley RG (1984) Progr Inorg Chem 31:371

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soudackov, A.V., Tchougreeff, A.L. & Misurkin, I.A. Electronic structure and optical spectra of transition metal complexes by the effective Hamiltonian method. Theoret. Chim. Acta 83, 389–416 (1992). https://doi.org/10.1007/BF01113064

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01113064

Key words

Navigation