Skip to main content
Log in

Scaling laws for invariant measures on hyperbolic and nonhyperbolic atractors

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The analysis of dynamical systems in terms of spectra of singularities is extended to higher dimensions and to nonhyperbolic systems. Prominent roles in our approach are played by the generalized partial dimensions of the invariant measure and by the distribution of effective Liapunov exponents. For hyperbolic attractors, the latter determines the metric entropies and provides one constraint on the partial dimensions. For nonhyperbolic attractors, there are important modifications. We discuss them for the examples of the logistic and Hénon map. We show, in particular, that the generalized dimensions have singularities with noncontinuous derivative, similar to first-order phase transitions in statistical mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Parisi, Appendix, in U. Frisch, Fully developed turbulence and intermittency, inProceedings of International School on Turbulence and Predictability in Geophysical Fluid Dynamics and Climate Dynamics, M. Ghil, ed. (North-Holland, 1984); U. Frisch,Phys. Scripta T9:137 (1985).

  2. R. Benzi, G. Paladin, G. Parisi, and A. Vulpiani,J. Phys. A 17:3521 (1984).

    Google Scholar 

  3. T. C. Halsey, M. H. Jensen, L. P. Kadanoff, I. Procaccia, and B. Shraiman,Phys. Rev. A 33:1141 (1986); M. H. Jensen, L. P. Kadanoff, A. Libchaber, I. Procaccia, and J. Stavans,Phys. Rev. Lett. 55:2798 (1985).

    Google Scholar 

  4. D. Ruelle,Thermodynamic Formalism (Addison-Wesley, Reading. Massachusetts, 1978); O. Lanford, Entropy and equilibrium states in classical and statistical mechanics, inStatistical Mechanics and Mathematical Problems, A. Lenard, ed. (Springer, 1976).

    Google Scholar 

  5. B. B. Mandelbrot,The Fractal Geometry of Nature (Freeman, San Francisco, 1982).

    Google Scholar 

  6. P. Grassberger,Phys. Lett. 97A:227 (1983).

    Google Scholar 

  7. H. G. Hentschel and I. Procaccia,Physica 8D:435 (1983).

    Google Scholar 

  8. P. Grassberger,Phys. Lett. 107A:101 (1985).

    Google Scholar 

  9. V. N. Shtern,Dokl. Akad. Nauk SSSR 270:582 (1983).

    Google Scholar 

  10. J.-P. Eckmann and D. Ruelle,Rev. Mod. Phys. 57:617 (1985).

    Google Scholar 

  11. J. D. Farmer, E. Ott, and J. A. Yorke,Physica 7D:153 (1983).

    Google Scholar 

  12. J.-P. Eckmann and I. Procaccia,Phys. Rev. A 34:659 (1986); G. Paladin, L. Peliti, and A. Vulpiani, University of Rome, Preprint (1986).

    Google Scholar 

  13. V. Jakobson,Commun. Math. Phys. 81:39 (1981); M. Misiurewicz,Publ. Math. IHES 53:17 (1981).

    Google Scholar 

  14. M. Hénon,Commun. Math. Phys. 50:69 (1976).

    Google Scholar 

  15. S. Newhouse, Lectures on dynamical systems, inDynamical Systems (Birkhauser, Boston, 1980); J. Guckenheimer and P. Holmes,Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields (Springer, New York, 1986).

    Google Scholar 

  16. E. Ott, W. Withers, and J. A. Yorke,J. Stat. Phys. 36:687 (1984).

    Google Scholar 

  17. O. Rössler,Phys. Lett. 57A:397 (1976); P. Holmes,Phil. Trans. R. Soc. A 292:419 (1979).

    Google Scholar 

  18. A. Renyi,Probability Theory (North-Holland, Amsterdam, 1970).

    Google Scholar 

  19. R. Badii and A. Politi,Phys. Rev. Lett. 52:1661 (1984); R. Badii and A. Politi,J. Stat. Phys. 40:725 (1985).

    Google Scholar 

  20. L. P. Kadanoff, private communication.

  21. J. Balatoni and A. Renyi, inSelected Papers of A. Renyi, Vol. 1, p. 558 (Akademia, Budapest, 1976).

    Google Scholar 

  22. S. J. Chang and P. R. Fendlay,Phys. Rev. A 33:4092 (1986).

    Google Scholar 

  23. D. Rand, The singularity spectrum for hyperbolic cantor sets and attractors, University of Arizona, preprint (1986); P. Collet, J. Lebowitz, and A. Porzio, Dimension spectrum for some dynamical systems, to be published.

  24. P. Fredrickson, J. L. Kaplan, E. D. Yorke, and J. A. Yorke,J. Diff. Eqs. 49:185 (1983).

    Google Scholar 

  25. P. Grassberger, inChaos in Astrophysics, J. Perdanget al., eds. (Reiedl, Dortrecht, 1985); P. Grassberger, inChaos, A. V. Holden, ed. (Manchester University Press, Manchester, 1986).

    Google Scholar 

  26. P. Grassberger and I. Procaccia,Physica 13D:34 (1984).

    Google Scholar 

  27. P. Billingsley,Ergodic Theory and Information (Wiley, New York, 1965).

    Google Scholar 

  28. F. Takens, Invariants related to dimension and entropy, inAtas do 13° Coloquio Brasileiro de Matematica (1984).

  29. P. Grassberger and I. Procaccia,Physica 9D:189 (1983).

    Google Scholar 

  30. J. D. Farmer, Order within chaos, Thesis, University of California, Santa Cruz (1981).

    Google Scholar 

  31. E. N. Lorenz,Physica 13D:90 (1984);17D:279 (1985).

    Google Scholar 

  32. R. Badii and A. Politi,Phys. Rev. 35A:1288 (1987).

    Google Scholar 

  33. H. Fujisaka,Prog. Theor. Phys. 70:1264 (1983).

    Google Scholar 

  34. G. Györgyi and P. Szepfalusy,Z. Phys. B 55:179 (1984); P. C. Hemmer,J. Phys. A 17:L247 (1984); S. Grossmann and H. Horner,Z. Phys. B 60:79 (1985).

    Google Scholar 

  35. B. V. Chirikov and D. L. Shepelyansky,Physica 13D:395 (1984); P. Grassberger and H. Kantz,Phys. Lett. 113A:167 (1985).

    Google Scholar 

  36. P. Grassberger,Physica 14D:365 (1985).

    Google Scholar 

  37. F. Ledrappier and L. S. Young,Ann. Math. 122:509 (1985).

    Google Scholar 

  38. Ya. B. Pesin,Russ. Math. Surv. 32:55 (1977); D. Ruelle,Ann. N. Y. Acad. Sci. 136:229 (1981).

    Google Scholar 

  39. R. Badii and A. Politi,Phys. Scripta 35:243 (1987).

    Google Scholar 

  40. G. Julia,J. Math. Ser. 7 (Paris) 4:47 (1918); P. Fatou,Bull. Soc. Math. France 47:161 (1919); H. Brolin,Ark. Mat. 6:103 (1965).

    Google Scholar 

  41. D. Ruelle,Ergod. Theory Dyn. Syst. 2:109 (1982); A. Manning, University of Warwick preprint (1984).

    Google Scholar 

  42. S. Ulam and J. Von Neumann,Bull. Am. Math. Soc. 53:1120 (1947).

    Google Scholar 

  43. L. de Arcangelis, S. Redner, and A. Coniglio,Phys. Rev. B 31:4725 (1985); R. Rammal, C. Tannous, and A.-M. S. Tremblay,Phys. Rev. A 31:2662 (1985).

    Google Scholar 

  44. S. Roux and C. D. Mitescu,Phys. Rev. B 35:898 (1987).

    Google Scholar 

  45. P. Cvitanovic, unpublished notes.

  46. R. Gonczi, Evaluation of the capacity of a strange attractor by a discretization method, University of Nice preprint (1986).

  47. P. Grassberger,Phys. Lett. 97A:224 (1983).

    Google Scholar 

  48. W. E. Caswell and J. A. Yorke, inDimensions and Entropies in Chaotic Systems, G. Mayer-Kress, ed. (Springer, Berlin, 1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grassberger, P., Badii, R. & Politi, A. Scaling laws for invariant measures on hyperbolic and nonhyperbolic atractors. J Stat Phys 51, 135–178 (1988). https://doi.org/10.1007/BF01015324

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01015324

Key words

Navigation