Skip to main content
Log in

The ecology and evolution of visual pollen signals

  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

By offering pollen and/or nectar as a food resource, angiosperms exploit flower visitors for pollen transport. Pollen thus acts not only as a means for transportation of male gametes, but also as a food reward for potential pollinators. Many findings provide compelling evidence that pollen acts, in addition, as a visual signal. The present contribution reviews several strategies that angiosperms have evolved to attract potential pollinators to the site of reward. We here consider evolutionary, ecological, sensory-physiological, and behavioural aspects of flower-pollinator interactions that are correlated with visual signals provided by pollen and pollen-producing organs, or imitations thereof.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ågren J. (1996) Population size, pollinator limitation, and seed set in the self-incompatible herbLythrum salicaria. Ecology 77: 1779–1790.

    Google Scholar 

  • Ågren J., Ericson L. (1996) Population structure and morph-specific fitness differences in tristylousLythrum salicaria. Evolution 50: 126–139.

    Google Scholar 

  • Ågren J., Schemske D.W. (1991) Pollination by deceit in a neotropical monoecious herb,Begonia involucrata. Biotropica 23: 235–241.

    Google Scholar 

  • Asbeck F. (1954) Sonnenlicht und Biogenese. Strahlentherapie 93: 602–609.

    Google Scholar 

  • Barbier M. (1970) Chemistry and biochemistry of pollens. Progr. Phytochem. 2: 1–34.

    Google Scholar 

  • Barrett S.C.H. (1985) Floral trimorphism and monomorphism in continental and island populations ofEichhornia paniculata (Spreng.) Solms. (Pontederiaceae). Biol. J. Linn. Soc. 25: 41–60.

    Google Scholar 

  • Beck v. Mannagetta und Lerchenau G. (1914) Die Pollennachahmung in den Blüten der OrchideengattungEria. Sitzungsberichte d. kais. Akad. d. Wiss. math. naturw. Klasse, Bd. CXXIII, Abt. 1: 1033–1046.

    Google Scholar 

  • Bernhardt P. (1996) Anther adaptation in animal pollination. In: D'Arcy W.G., Keating R.C. (eds.) The Anther. Form, function and phylogeny. Cambridge University Press, Cambridge, pp. 192–200.

    Google Scholar 

  • Bertrand G., Poirault G. (1892) Sur la matiére colorante du pollen. C. R. Seances Acad. Sci. 115: 828–830.

    Google Scholar 

  • Biedinger N., Barthlott W. (1993) Untersuchungen der Ultraviolettreflexion von Angiospermenblüten I. Trop. subtrop. Pflanzenwelt 86: 1–122.

    Google Scholar 

  • Boyden T.C. (1982) The pollination biology ofCalypso bulbosa var.americana (Orchidaceae) initial deception of bumblebee visitors. Oecologia 55: 178–184.

    Google Scholar 

  • Brouillard R., Dangles O. (1993) Flavonoids and flower colour. In: Harborne J.B. (ed.) The Flavonoids: Advances in research since 1986. Chapman & Hall, London, pp. 565–588.

    Google Scholar 

  • Burr B., Barthlott W. (1993) Untersuchungen zur Ultraviolettreflexion von Angiospermenblüten II. Magnoliidae, Ranunculidae, Hamamelididae, Caryophyllidae, Rosidae. Trop. subtrop. Pflanzenwelt 86: 1–193.

    Google Scholar 

  • Burr B., Rosen D., Barthlott W. (1995) Untersuchungen zur Ultraviolettreflexion von Angiospermenblüten III. Dilleniidae und Asteridae s.l.. Trop. subtrop. Pflanzenwelt 93: 1–185.

    Google Scholar 

  • Cane J.H. (1993) Reproductive role of sterile pollen in cryptically dioecious species of flowering plants. Curr. Sci. 65: 223–225.

    Google Scholar 

  • Chase M.W., Soltis D.E., Olmstead R.G., Morgan D., Les D.H., Mishler B.D., Divall M.R., Price R.A., Hills H.G., Qiu Y., Kron K.A., Rettig J.H., Conti E., Palmer J.D., Manhart J.R., Sytsma K.J., Michaels H.J., Kress W.J., Karol K.G., Clark W.D., Hedrén M., Gaut B.S., Jansen R.K., Kim K., Wimpee C.F., Smith J.F., Furnier G.R., Strauss S.H., Xiang Q., Plunkett G.M., Soltis P.S., Swensen S.M., Williams S.E., Gadek P.A., Quinn C.J., Eguiarte L.E., Golenberg E., Learn Jr., G.H., Graham S.W., Barrett S.C.H., Dayanandan S., Albert V.A. (1993) Phylogenetics of seed plants: an analysis of nucleotide sequences from the plastid generbcL. Ann. Missouri Bot. Gard. 80: 528–580.

    Google Scholar 

  • Chittka L. (1996) Does bee color vision predate the evolution of flower color? Naturwissenschaften 83: 136–138.

    Google Scholar 

  • Chittka L., Shmida A., Troje N., Menzel R. (1994) Ultraviolet as a component of flower color reflections, and the colour perception of Hymenoptera. Vision Res. 34: 1489–1508.

    Google Scholar 

  • Chittka L., Waser N.M. (1997) Why red flowers are not invisible to bees. Israel J. Pl. Sci. 45: 169–183.

    Google Scholar 

  • Classen-Bockhoff R. (1990) Pattern analysis in pseudanthia. Plant Syst. Evol. 171: 57–88.

    Google Scholar 

  • Classen-Bockhoff R. (1996) Functional units beyond the level of the capitulum and cypsela in Compositae. In: Caligari P.D.S., Hind D.J.N. (eds.) Compositae: Biology & Utilization. Proceedings of the International Compositae Conference, Kew, 1994. (D.J.N. Hind, Editorin-Chief), vol. 2, Royal Botanic Gardens, Kew. pp. 129–160.

    Google Scholar 

  • Dafni A., Ivri Y. (1981) The flower biology ofCephalanthera longifolia (Orchidaceae) — pollen imitation and facultative floral mimicry. Plant Syst. Evol. 137: 229–240.

    Google Scholar 

  • Dafni A., Kevan P.G. (1996) Floral symmetry and nectar guides: ontogenetic constraints from floral development, colour pattern rules and functional significance. Bot. J. Linn. Soc. 120: 371–377.

    Google Scholar 

  • Dafni A., Giurfa M. (1998) Nectar guides and insect pattern recognition — a reconsideration. Anais do Encontro sobre Abelhas 3: 55–66.

    Google Scholar 

  • Dafni A., Giurfa M. (1999) The functional ecology of floral guides in relation to insects behaviour and vision. In: Wasser S.P. (ed.) Evolutionary Theory and Processes: Modern Perspectives, Papers in Honour of Eviatar Nevo. Kluwer Academic Publishers, Netherlands pp. 363–383.

    Google Scholar 

  • Dafni A., Bernhardt P., Shmida A., Ivri Y., Greenbaum S., O'Tool Ch., Losito L. (1990) Red bowl-shaped flowers: convergence for beetle pollination in the Mediterranean region. Israel J. Bot. 39: 81–92.

    Google Scholar 

  • Darwin C. (1877) Die verschiedenen Blüthenformen an Pflanzen der nämlichen Art. In: Ch. Darwin's gesammelte Werke. E. Schweizerbart'sche Verlagshandlung, Stuttgart, Bd. 9, 3. Abt.: 119–163.

  • Daumer K. (1958) Blumenfarben wie sie die Bienen sehen. Z. Vergl. Physiol. 41: 49–110.

    Google Scholar 

  • Dobson H.E.M. (1988) Survey of pollen and pollenkitt lipids — chemical cues to flower visitors? Amer. J. Bot. 75 170–182.

    Google Scholar 

  • Dobson H.E.M. (1989) Pollenkitt in plant reproduction. In: Bock J.H., Linhart Y.B. (eds.) The evolutionary ecology of plants. Westview Press, Boulder, Colorado, pp. 227–246.

    Google Scholar 

  • Dressler R.L. (1971) Dark pollinia in hummingbird-pollinated orchids or do hummingbirds suffer from strabismus? Am. Nat. 105: 80–83.

    Google Scholar 

  • Dukas R. (1987) Foraging behavior of three bee species in a natural mimicry system: female flowers which mimic male flowers inEcballium elaterium (Cucurbitaceae). Oecologia 74: 256–263.

    Google Scholar 

  • Dulberger R. (1992) Floral polymorphisms and their functional significance in the heterostylous syndrome. In: Barrett S.C.H. (ed.) Evolution and function of heterostyly. Springer, Berlin, pp. 41–84.

    Google Scholar 

  • Endress P.K. (1990) Evolution of reproductive structures and functions in primitive angiosperms (Magnoliidae). Mem. N.Y. Bot. Gard. 55: 5–34.

    Google Scholar 

  • Erbar C., Leins P. (1995) Portioned pollen release and the syndromes of secondary pollen presentation in the Campanulales-Asterales-complex. Flora 190: 323–338.

    Google Scholar 

  • Erhardt A., Baker I. (1990) Pollen amino acids — an additional diet for a nectar feeding butterfly? Plant Syst. Evol. 169: 111–121.

    Google Scholar 

  • Errera L. (1905) Sur les characteres hétérostyliques secondaires des primevères. Recueil de l'institut botanique Leo Errera 6: 223–255.

    Google Scholar 

  • Euler H. v., Ahlström L., Högberg B., Pettersson I. (1944) Coenzyme, Enzyme, Wuchsstoffe und Reizstoffe in Pflanzenorganen. I. Arkiv för Kemi, Mineralogi och Geologi 19A(4): 1–15.

    Google Scholar 

  • Faden R.B. (1992) Floral attraction and floral hairs in the Commelinaceae. Ann. Missouri Bot. Gard. 89: 46–52.

    Google Scholar 

  • Franchi G.G., Bellani L., Nepi M., Pacini E. (1996) Types of carbohydrate reserves in pollen: localization, systematic distribution and ecophysiological significance. Flora 191: 143–159.

    Google Scholar 

  • Gack C. (1981) Zur Bedeutung von Staubgefäßattrappen als Signale für die Bestäuber. Experimente mit Hummeln (Bombus terrestris). Zool. Jb. Syst. 108: 229–246.

    Google Scholar 

  • Giurfa M., Backhaus W., Menzel R. (1995) Color and angular orientation in the discriminiation of bilateral symmetric patterns in the honeybee. Naturwissenschaften 82: 198–201.

    Google Scholar 

  • Giurfa M., Eichmann B., Menzel R. (1996) Symmetry perception in an insect. Nature 382: 458–461.

    Google Scholar 

  • Goodwin R.M., Steven D. (1993) Behaviour of honey bees visiting kiwifruit flowers. New Zealand Journal of Crop and Horticultural Science 21: 17–24.

    Google Scholar 

  • Gottsberger G. (1988) The reproductive biology of primitive angiosperms. Taxon 37: 630–643.

    Google Scholar 

  • Guldberg L.D., Atsatt P.R. (1975) Frequency of reflection and absorption of ultraviolet light in flowering plants. Am. Midl. Nat. 93: 35–43.

    Google Scholar 

  • Grau J., Leins P. (1968) Pollenkorntypen und Sektionsgliederung in der GattungMyosotis. Ber. Deutsch. Bot. Ges. 81: 107–115.

    Google Scholar 

  • Hansen K., Wacht S., Seebauer H., Schnuch M. (1998) New aspects of chemoreception in flies. Ann. N.Y. Acad. Sci. 855: 143–147.

    Google Scholar 

  • Harborne J.B., Grayer R.J. (1993) Flavonoids and insects. In: Harborne J.B. (ed.) The Flavonoids: Advances in research since 1986. Chapman & Hall, London, pp. 589–618.

    Google Scholar 

  • Heinrich B., Mudge P.R., Deringis P.G. (1977) Laboratory analysis of flower constancy in foraging bumblebees:Bombus ternarius andB. terricola. Behav. Ecol. Sociobiol. 2: 247–265.

    Google Scholar 

  • Herrera M.L.G., del Rio M.C. (1998) Pollen digestion by new world bats: effects of processing time and feeding habits. Ecology 79(8): 2828–2838.

    Google Scholar 

  • Heß D. (1983) Die Blüte. Ulmer, Stuttgart, pp. 312–317.

    Google Scholar 

  • Horovitz A., Cohen Y. (1972) Ultraviolet reflectance characteristics in flowers of crucifers. Amer. J. Bot. 59: 706–713.

    Google Scholar 

  • Johnson S.D., Dafni A. (1998) Response of beeflies to the shape and pattern of model flowers: implications for floral evolution in a Mediterranean herb. Funct. Ecol. 12: 289–297.

    Google Scholar 

  • Kato M., Inoue T. (1994) Origin of insect pollination. Nature 368: 195.

    Google Scholar 

  • Kevan P.G. (1978) Floral coloration, its colorimetric analysis and significance in anthecology. In: Richards A.J. (ed.) The Pollination of Flowers by Insects. Linnaean Society Symposium No. 6, pp. 51–78.

  • Kevan P.G. (1983) Floral colours through the insect eye: What they are and what they mean. In: Jones C.E., Little R.J. (eds.) Handbook of Experimental Pollination Biology ch. 1. Van Nostrand and Company, New York, pp. 3–25.

    Google Scholar 

  • Kevan P.G., Clark E.A., Thomas V.G. (1990) Pollination: a crucial ecological and mutualistic link in agroforestry and sustainable agriculture. Proc. ent. Soc. Ont. 121: 43–48.

    Google Scholar 

  • Knapp S., Persson V., Blackmore S. (1998) Pollen morphology and functional dioecy inSolanum (Solanaceae). Plant Syst. Evol. 210: 113–139.

    Google Scholar 

  • Kugler H. (1935) Blütenökologische Untersuchungen mit Hummeln. VII. Die Anlockung von “Neulingen” durch Blüten. Planta 23: 692–714.

    Google Scholar 

  • Kugler H. (1963) UV-Musterungen auf Blüten und ihr Zustandekommen. Planta 59: 296–329.

    Google Scholar 

  • Kugler H. (1966) UV-Male auf Blüten. Ber. Dtsch. Bot. Ges. 79: 57–70.

    Google Scholar 

  • Kugler H. (1970) Blütenökologie. G. Fischer, Stuttgart.

    Google Scholar 

  • Lehrer M., Horridge G.A., Zhang S.W., Gadagkar R. (1995) Shape vision in bees: innate preference for flower-like patterns. Phil. Trans. R. Soc. Lond. B 347: 123–137.

    Google Scholar 

  • Leins P., Erbar C. (1990) On the mechanisms of secondary pollen presentation in the Campanulales-Asterales-complex. Bot. Acta 103: 87–92.

    Google Scholar 

  • Leins P., Erbar C. (1994) Flowers in Magnoliidae and the origin of flowers in other subclasses of the angiosperms. II. The relationships between flowers of Magnoliidae, Dilleniidae, and Caryophyllidae. Plant Syst. Evol. [Suppl.] 8: 209–218.

    Google Scholar 

  • Lloyd D.G., Wells M.S. (1992) Reproductive biology of a primitive angiosperm,Pseudowintera colorata (Winteraceae), and the evolution of pollination systems in the Anthophyta. Plant Syst. Evol. 181: 77–95.

    Google Scholar 

  • Lubliner-Mianowska K. (1955) The pigments of pollen grains. Acta Societatis Botanicorum Poloniae XXIV (3–6): 609–618.

    Google Scholar 

  • Lunau K. (1988) Angeborenes und erlerntes Verhalten beim Blütenbesuch von Schwebfliegen — Attrappenversuche mitEristalis pertinax (Scopoli) (Diptera, Syrphidae). Zool. Jb. Physiol. 92: 487–499.

    Google Scholar 

  • Lunau K. (1990) Colour saturation triggers innate reactions to flower signals: Flower dummy experiments with bumblebees. J. Comp. Physiol. A 166: 827–834.

    Google Scholar 

  • Lunau K. (1991) Innate flower recognition in bumblebees (Bombus terrestris, B. lucorum; Apidae)- Optical signals from stamens as landing reaction releasers. Ethology 88: 203–214.

    Google Scholar 

  • Lunau K. (1992a) Innate recognition of flowers by bumble bees — orientation of antennae to visual stamen signals. Can. J. Zool. 70: 2139–2144.

    Google Scholar 

  • Lunau K. (1992b) A new interpretation of flower guide colouration: absorption of ultraviolet light enhances colour saturation. Plant Syst. Evol. 183: 51–65.

    Google Scholar 

  • Lunau K. (1993) Interspecific diversity and uniformity of flower colour patterns as cues for learned discrimination and innate detection of flowers. Experientia 49: 1002–1010.

    Google Scholar 

  • Lunau K. (1995) Notes on the colour of pollen. Plant Syst. Evol. 198: 235–252.

    Google Scholar 

  • Lunau K. (1996a) Signalling function of floral colour patterns for insect flower visitors. Zool. Anz. 235: 11–30.

    Google Scholar 

  • Lunau K. (1996b) Unidirectionality of floral colour changes. Plant Syst. Evol. 200: 125–140.

    Google Scholar 

  • Lunau K., Maier E.J. (1995) Innate colour preferences of flower visitors. J. Comp. Physiol. A 177: 1–19.

    Google Scholar 

  • Lunau K., Wacht S. (1994) Optical releasers of the innate proboscis extension in the hoverflyEristalis tenax L. (Syrphidae, Diptera). J. Comp. Physiol. A. 174: 574–579.

    Google Scholar 

  • Lunau K., Wacht S. (1997) Angeborene Blütenerkennung bei der SchwebfliegeEristalis tenax L. Mitt. Dtsch. Ges. allg. angew. Ent. 11: 481–484.

    Google Scholar 

  • Lunau K., Wacht S., Chittka L. (1996) Colour choices of naive bumble bees and their implications for colour perception. J. Comp. Physiol. A 178: 477–489.

    Google Scholar 

  • Macior L.W. (1964) An experimental study of the floral ecology ofDodecatheon meadia. Amer. J. Bot. 51: 96–108.

    Google Scholar 

  • Magin N., Classen R., Gack C. (1989) The morphology of false anthers inCraterostigma plantagineum andTorenia polygonoides (Scrophulariaceae). Can. J. Bot. 67: 1931–1937.

    Google Scholar 

  • McKey D. (1979) The distribution of secondary compounds within plants. In: Rosenthal G., Janzen D.H. (eds.) Herbivores. Academic Press, New York, pp. 56–133.

    Google Scholar 

  • Menzel R. (1983) Neurobiology of learning and memory: the honeybee as a model system. Naturwissenschaften 70: 504–511.

    Google Scholar 

  • Menzel R. (1985) Learning in honey bees in an ecological and behavioral context. Fortschr. Zool. 31: 55–74.

    Google Scholar 

  • Menzel R., Erber J. (1978) Learning and memory in bees. Sci. Am. 239: 80–87.

    Google Scholar 

  • Milius S. (1998) Will petunias and poppies need sunscreen? Science News 153: 183.

    Google Scholar 

  • Møller A.P. (1995) Bumblebee preference for symmetrical flowers. Proc. Natl. Acad. Sci. USA 92: 2288–2292.

    Google Scholar 

  • Mori S.A., Orchard J.E. (1980) Intrafloral pollen differentiation in the new world Lecythidaceae, subfamily Lecythidoideae. Science 209: 400–403.

    Google Scholar 

  • Mulligan G.A., Kevan P.G. (1973) Color, brightness and other floral characteristics attracting insects to the blossoms of some Canadian weeds. Can. J. Bot. 51: 1939–1952.

    Google Scholar 

  • Norstog K. (1987) Cycads and the origin of insect pollination. Am. Sci. 75: 270–279.

    Google Scholar 

  • O'Neil P., Schmitt J. (1993) Genetic constraints on the independent evolution of male and female reproductive characters in the tristylous plantLythrum salicaria. Evolution 47: 1457–1471.

    Google Scholar 

  • Ornduff R., Mosquin T. (1969) Variation in the spectral qualities of flowers in theNymphoides indica complex (Menyanthaceae) and its possible adaptive significance. Can. J. Bot. 48: 603–605.

    Google Scholar 

  • Osche G. (1979) Zur Evolution optischer Signale bei Blütenpflanzen. Biologie in unserer Zeit 9: 161–170.

    Google Scholar 

  • Osche G. (1983a) Zur Evolution optischer Signale bei Pflanze, Tier und Mensch. Ernst-Haeckel-Vorlesung an der Friedrich-Schiller-Universität Jena, pp. 4–35.

  • Osche G. (1983b) Optische Signale in der Coevolution von Pflanze und Tier. Ber. Deutsch. Bot. Ges. 96: 1–27.

    Google Scholar 

  • Osche G. (1986) Vom “Erscheinungsbild” der Blütenpflanzen. Zur Evolution optischer Signale. In: Mannheimer Forum, pp. 63–123.

  • Pacini E. (1996) Types and meaning of pollen carbohydrate reserves. Sex. Plant Reprod. 9: 362–366.

    Google Scholar 

  • Pacini E. (1997) Tapetum character states: analytical keys for tapetum types and activities. Can. J. Bot. 75: 1448–1459.

    Google Scholar 

  • Pacini E., Bellani L. M. (1986)Lagerstroemia indica L. pollen: form and function. In: Blackmore S., Ferguson I.K. (eds.) Pollen and spores, form and function. Academic Press, London, pp. 347–357.

    Google Scholar 

  • Pacini E., Franchi G.G. (1993) Role of the tapetum in pollen and spore dispersal. Plant Syst. Evol. 7: 1–11.

    Google Scholar 

  • Pacini E., Franchi G.G., Ripaccioli M. (1999) Ripe pollen structure and histochemistry of some gymnosperms. Plant Syst. Evol. 217: 81–99.

    Google Scholar 

  • Paulus H.F. (1988) Co-Evolution und einseitige Anpassungen in Blüten-Bestäuber-Systemen: Bestäuber als Schrittmacher in der Blütenevolution. Verh. Dtsch. Zool. Ges. 81: 25–46.

    Google Scholar 

  • Pellmyr O. (1989) The cost of mutualism: interactions betweenTrollius europaeus and its pollinating parasites. Oecologia 78: 53–59.

    Google Scholar 

  • Pellmyr O. (1992a) Evolution of insect pollination and angiosperm diversification. Tree 7: 46–48.

    Google Scholar 

  • Pellmyr O. (1992b) The phylogeny of a mutualism: evolution and coadaptation betweenTrollius and its seed-parasitic pollinators. Biol. J. Linn. Soc. 47: 337–365.

    Google Scholar 

  • Pellmyr O., Thien L.B. (1986) Insect reproduction and floral fragrances: keys to the evolution of the angiosperms? Taxon 35: 76–85.

    Google Scholar 

  • Petanidou T., Vokou D. (1990) Pollination and pollen energetics in Mediterranean ecosystems. Amer. J. Bot. 77: 986–992.

    Google Scholar 

  • Real L., Ott J., Silverfine E. (1982) On the tradeoff between the mean and the variance in foraging: effect of spatial distribution and color preference. Ecology 63: 1617–1623.

    Google Scholar 

  • Renner S. (1989) A survey of reproductive biology in neotropical Melastomataceae and Memecylaceae. Ann. Missouri Bot. Gard. 76: 496–518.

    Google Scholar 

  • Richardson K.C., Wooller R.D., Collins B.G. (1986) Adaptations to a diet of nectar and pollen in the marsupialTarsipes rostratus (Marsupialia: Tarsipedidae). J. Zool. Lond. (A) 208: 285–297.

    Google Scholar 

  • Rose M.-J., Barthlott W. (1994) Coloured pollen in Cactaceae: a mimetic adaptation to hummingbird-pollination. Bot. Acta 107: 402–406.

    Google Scholar 

  • Schemske D.W., Ågren J. (1995) Deceit pollination and selection on female flower size inBegonia involucrata: an experimental approach. Evolution 49: 207–214.

    Google Scholar 

  • Schemske D.W., Ågren J., Le Corff J. (1996) Deceit pollination in the monoecious, neotropical herbBegonia oaxacana (Begoniaceae). In: Lloyd D.G., Barrett S.C.H. (eds.) Floral Biology: Studies on Floral Evolution in Animal-Pollinated Plants. Chapman and Hall, New York, pp. 292–318.

    Google Scholar 

  • Schmidt J.O. (1985) Phagostimulants in pollen. J. Apicult. Res. 24: 107–114.

    Google Scholar 

  • Silberglied R.E. (1979) Communication in the ultraviolet. Ann. Rev. Ecol. Syst. 10: 373–398.

    Google Scholar 

  • Smithson A., Macnair M.R. (1996) Frequencydependent selection by pollinators: mechanisms and consequences with regard to behaviour of bumblebeesBombus terrestris (L.) (Hymenoptera: Apidae). J. Evol. Biol. 9: 571–588.

    Google Scholar 

  • Stanley R.G., Linskens H.F. (1974) Pollen. Biology, Biochemistry, Management. Springer, Berlin Heidelberg New York.

    Google Scholar 

  • Stanley R.G., Linskens H.F. (1985) Pollen. Biologie, Biochemie, Gewinnung und Verwendung. Urs Freud Verlag, Greifenberg/Ammersee.

    Google Scholar 

  • Steiner K.E. (1998) Beetle pollination of peacock moraeas (Iridaceae) in South Africa. Plant Syst. Evol. 209: 47–65.

    Google Scholar 

  • Thorp R.W. (1979) Structural, behavioral, and physiological adaptations of bees (Apoidea) for collecting pollen. Ann. Missouri Bot. Gard. 66: 788–812.

    Google Scholar 

  • van der Pijl L. (1960) Ecological aspects of flower evolution. I. Phyletic evolution. Evolution 14: 403–416.

    Google Scholar 

  • van der Pijl L., Dodson C.H. (1966) Orchid Flowers. Their pollination and evolution. The Fairchild Tropical Garden and the University of Miami Press, Coral Gables, Florida, pp. 21–198.

    Google Scholar 

  • Vogel S. (1978) Evolutionary shifts from reward to deception in pollen flowers. In: Richards A. (ed.) The pollination of flowers by insects. Linn. Soc. Sym. Ser. Nr. 6, pp. 89–96.

    Google Scholar 

  • Vogel S. (1993) Betrug bei Pflanzen: Die Täuschblumen. Abh. Akad. Wiss. Lit. (Mainz) 1: 1–48.

    Google Scholar 

  • Wacht S., Hansen K., Lunau K. (1996) Optical and chemical stimuli control pollen feeding in the hoverflyEristalis tenax L. (Syrphidae; Diptera). Entomol. exp. appl. 80: 50–53.

    Google Scholar 

  • Waser N.M. (1986) Flower constancy: definition, cause, and measurement. Am. Nat. 127: 593–603.

    Google Scholar 

  • Waser N.M., Price M.V. (1985) The effect of nectar guides on pollinator preference: experimental studies with a montane herb. Oecologia 67: 121–126.

    Google Scholar 

  • Wehner R. (1981) Spatial vision in arthropods. In: Autrum H.-J. et al. (eds.) Handboock of Sensory Physiology. Springer, Berlin, pp. 287–616.

    Google Scholar 

  • Wehner R. (1987) ‘Matched filters’ — neural models of the external word. J. Comp. Physiol. A 161: 511–531.

    Google Scholar 

  • Wiermann R. (1968) Untersuchungen zum Phenylpropanstoffwechsel des Pollens. Ber. Deutsch. Bot. Ges. 81: 3–16.

    Google Scholar 

  • Wiermann R., Gubatz S. (1992) Pollen wall and sporopollenin. Int. Rev. Cytol. 140: 35–71.

    Google Scholar 

  • Willis D.S., Kevan P.G. (1995) Foraging dynamics ofPeponapis pruinosa (Hymenoptera: Anthophoridae) on pumpkin (Cucurbita pepo) in Southern Ontario. Can. Entomol. 127: 167–175.

    Google Scholar 

  • Wolfe L.M., Barrett S.C.H. (1987) Pollinator foraging behavior and pollen collection on the floral morphs of tristylousPontederia cordata L. Oecologia 74: 347–351.

    Google Scholar 

  • Zimmerman M. (1982) Optimal foraging: random movement by pollen collecting bumblebees. Oecologia 53: 394–398.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lunau, K. The ecology and evolution of visual pollen signals. Pl Syst Evol 222, 89–111 (2000). https://doi.org/10.1007/BF00984097

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00984097

Key words

Navigation