Skip to main content
Log in

Photorefractive centers in LiNbO3, studied by optical-, Mössbauer- and EPR-methods

  • Contributed Papers
  • Published:
Applied physics Aims and scope Submit manuscript

Abstract

The photorefractive properties of LiNbO3∶Fe and LiNbO3∶Cu have been studied in combination with optical absorption-, Mössbauer- and EPR-measurements. The charge states of Fe in successively reduced LiNbO3∶Fe have been investigated with respect to the influence on the photorefractive sensitivity and saturation value of the refractive index change. The results of this experiment demonstrate clearly the close correlation between the concentration of Fe2+ impurities and the optical absorption band around 2.6 eV in LiNbO3∶Fe, which is known to give rise to an anisotropic charge transport upon optical excitation. The resulting photocurrents determine the photorefractive sensitivity mainly in the initial state of halographic exposure. With increasing conversion from Fe3+ to Fe2+ the photorefractive sensitivity saturates and the saturation value of the refractive index change decreases remarkably.

In the case of LiNbO3∶Cu a similar behaviour of the photorefractive storage parameters after successive reduction treatments has been observed qualitatively. However, in contradiction to LiNbO3∶Fe the Cu2+ centers cannot be related to the photorefractive sensitivity of LiNbO3∶Cu.

These results are discussed with respect to the predictions of two models concerning the microscopic nature of the photorefractive process in doped LiNbO3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.M.Glass, D.von derLinde, T.J.Negran: Appl. Phys. Lett.25, 233 (1974)

    Article  Google Scholar 

  2. D.L.Staebler, J.J.Amodei: J. Appl. Phys.43, 1042 (1972)

    Article  ADS  Google Scholar 

  3. G.E.Peterson, A.M.Glass, T.J.Negran: Appl. Phys. Lett.19, 130 (1971)

    Article  Google Scholar 

  4. M.G.Clark, F.J.DiSalvo, A.M.Glass, G.E.Peterson: J. Chem. Phys.59, 6209 (1973)

    Article  Google Scholar 

  5. A.M.Glass, G.E.Peterson, T.J.Negran: ASTM-NBS Symposium on Damage in Laser Materials, Boulder CO. (1972)

  6. W.Philips, J.J.Amodei, D.L.Staebler: RCA Rev.33, 94 (1972)

    Google Scholar 

  7. J.J.Amodei, W.Philips, D.L.Staebler: Appl. Opt.11, 390 (1972)

    ADS  Google Scholar 

  8. D.Dischler, J.R.Herrington, A.Räuber, H.Kurz: Solid State Comm.14, 1233 (1974)

    Article  Google Scholar 

  9. H.Kurz, E.Krätzing: Appl. Phys. Lett.26, 635 (1975)

    Article  ADS  Google Scholar 

  10. See, for example: InChemical Applications of Mössbauer Spectroscopy, ed. by V.I.Goldanski and R.H.Herber (Academic Press, New York 1968)

    Google Scholar 

  11. G.K.Wertheim:Mössbauer Effect, Principles and Applications (Academic Press, New York 1971)

    Google Scholar 

  12. W.Keune, S.K.Date, I.Deszi, U.Gonser: J. Appl. Phys.46, 3914 (1975)

    Article  ADS  Google Scholar 

  13. B.Dischler, A.Räuber: Solid State Comm.17, 953 (1975)

    Article  Google Scholar 

  14. W.Philips, D.L.Staebler: J. Electronic Mat.3, 601 (1974)

    Google Scholar 

  15. G.A.Alphonse, R.C.Alig, D.L.Staebler, W.Philips: RCA Rev.36, 213 (1975)

    Google Scholar 

  16. L.Young, W.K.Y.Wong, M.L.W.Thewalt, W.D.Cornish: Appl. Phys. Lett.24, 264 (1974)

    Article  Google Scholar 

  17. H.Kurz: Ferroelectrics13, 291 (1976)

    Google Scholar 

  18. H.Kogelnik: Bell System Techn. J.48, 2909 (1969)

    Google Scholar 

  19. N.Uchida: J. Opt. Soc. Am.63, 289 (1973)

    Google Scholar 

  20. G.Burns, D.F.O'Kane, R.S.Title: Phys. Rev.167, 314 (1968)

    Article  ADS  Google Scholar 

  21. T.Takeda, A.Watanabe, K.Sugihara: Phys. Lett. A27, 114 (1968)

    Article  ADS  Google Scholar 

  22. J.R.Herrington, B.Dischler, J.Schneider: Solid State Comm.10, 509 (1972)

    Article  Google Scholar 

  23. D.L.Staebler, W.Philips: Appl. Opt.13, 788 (1974)

    ADS  Google Scholar 

  24. D.W.Vahey: J. Appl. Phys.46, 3510 (1975)

    Article  ADS  Google Scholar 

  25. A.M.Glass, D.von derLinde, D.H.Auston, T.J.Negran: J. Electronic Mat.4, 915 (1975)

    Google Scholar 

  26. W.Keune, S.K.Date, U.Gonser, H.Bunzel: Ferroelectrics13, 443 (1976) and U.Gonser, H.Sakai, W. Keune: J. Electrochem. Soc., 1976 (in press)

    Google Scholar 

  27. G.K.Wertheim, J.P.Remeika: Phys. Lett.10, 14 (1964)

    Article  ADS  Google Scholar 

  28. G.K.Wertheim, J.P.Remeika: InNuclear magnetic Resonance and Relaxation in Solids, Proc. Coll. Ampere XIII, ed. by L.vanGerven (North-Holland, Amsterdam 1965) p. 147

    Google Scholar 

  29. H.Engelmann, W.Keune (unpublished)

  30. A.J.Stone: Nuc;. Instr. Methods107, 285 (1973)

    Article  ADS  Google Scholar 

  31. Dae.M.Kim, RajivR.Shah, T.A.Rabson, F.K.Tittel: Appl. Phys. Lett.28, 338 (1976)

    Article  ADS  Google Scholar 

  32. E.Krätzig, H.Kurz: Ferroelectrics13, 295 (1976)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurz, H., Krätzia, E., Keune, W. et al. Photorefractive centers in LiNbO3, studied by optical-, Mössbauer- and EPR-methods. Appl. Phys. 12, 355–368 (1977). https://doi.org/10.1007/BF00886038

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00886038

PACS Code

Navigation