Skip to main content
Log in

Structural analysis of the Brigham City-Weber segment boundary zone, Wasatch normal fault, Utah: Implications for fault growth and structure

  • Faulting and Crustal Deformation: Field Observations and Modeling
  • Published:
pure and applied geophysics Aims and scope Submit manuscript

Abstract

We investigate the history, kinematics, principal stress orientations and geometry of deformation at the end of a bent normal fault segment of the Wasatch fault zone, Utah. Three fault types, developed in Archean crystalline rocks, reflect progressive uplift of fault-related footwall rocks. Chlorite-breccias and phyllonites reflect deep-level, reaction-assisted plastic deformation along the north-striking part of the segment. Planar, fretted faults which formed by cataclasis cut the phyllonites and breccias and are developed throughout the footwall of the segment. Youngest faults are hematitecoated, extremely narrow polished surfaces. Slip vectors and kinematic analyses of small faults developed in the footwall indicate oblique normal slip along the north-striking portion of the segment. Slip vectors and fault orientation along the northwest-striking portion of the segment reflect complexly oriented slip on faults which strike subparallel and at high angles to the main fault trace, yet slip is confined to a broad fault-parallel zone. Small faults at the southernmost tip of the segment indicate a strong influence of the north-striking Weber segment to the south. Inversion of fault data for principal stress orientations document complexly oriented principal stresses through the segment boundary zone and suggest that σ3 may have reoriented approximately 60° over the life of the segment. Subsurface structure combined with small fault data indicate the segment boundary is comprised of a southwest-plunging bedrock high which is reflected by a sharp bend in the Brigham City segment. The southern end of the Brigham City segment may have started, as a straight, north-striking fault which has bent due to changes in stress orientations and/or interaction with the adjacent Weber segment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Allmendinger, R. W., Marrett, R. A., andCladouhos, T. (1992),Faultkin, a Program for Analyzing Fault Slip Data for the Macintosh Computer. Copyrighted software.

  • Andrews, D. J. (1989),Mechanics of Fault Junctions, J. Geophys. Res.94, 9389–9397.

    Google Scholar 

  • Angelier, J. (1979),Determination of the Mean Principal Directions of Stresses for a Given Fault Population, Tectonophys.56, T17-T26.

    Google Scholar 

  • Arabasz, W. J., Pechmann, J. C., andBrown, E. D. (1992),Observational seismology and the evaluation of earthquake hazards and risk in the Wasatch Front area, Utah. InAssessment of Regional Earthquake Hazards and Risk Along the Wasatch Front, Utah (Gori, P. L., and Hays, W. W., eds.) (U. S. Geol. Sur. Prof. Paper 1500-D) 36 pp.

  • Best, M. G. (1988),Early Miocene Change in Direction of Least Principal Stress, Southwestern U.S.: Conflicting Influences from Dikes and Metamorphic Core-detachment Fault Terranes, Tectonics7, 249–259.

    Google Scholar 

  • Bjarnason, I. T., Cowie, P., Anders, M. H Seeber, L., andScholz, C. H. (1993)The 1912 Iceland Earthquake Rupture: Growth and Development of a Nascent Transform System, Bull. Seismol. Soc. Am.83, 416–435.

    Google Scholar 

  • Bruhn, R. L., Gibler, P. R., andParry, W. T. (1987),Rupture characteristics of normal faults: An example from the Wasatch fault zone, Utah. InContinental Extensional Tectonics (Coward, M. P., Dewey, J. F., and Hancock, P. L., eds.) (Geol. Soc. London Pub.28) pp. 337–353.

  • Bruhn, R. L., Yonkee, W. A., andParry, W. T. (1990),Structural and Fluid-chemical Properties of Seismogenic Normal Faults, Tectonophys.175, 139–157.

    Google Scholar 

  • Bryant, B. (1988),Geology of the Framington Canyon Complex, U.S. Geol. Surv. Prof. Paper1476, 54 pp.

  • Cowie, P. A. andScholz, C. H. (1992),Growth of the Faults by Accumulation of Seismic Slip, J. Geophys. Res.97, 11,085–11,095.

    Google Scholar 

  • Cox, S. J. D. andScholz, C. H. (1988),On the Formation and Growth of Faults, J. Struct. Geol.10, 413–430.

    Google Scholar 

  • Crittenden, M. D., Jr., andSorènsen, M. L. (1985a),Geology Map of the North Ogden and Part of the Ogden and Plain City Quadrangles, Box Elder and Weber Counties, Utah, U.S. Geol. Surv. Map I-606, scale 1:24,000.

  • Crittenden, M. D., Jr., andSorensen, M. L. (1985b),Geologic Map of the Mantua Quadrangle and Part of the Willard Quadrangle, Box Elder, Weber, and Cache Counties, Utah, U.S. Geol. Surv. Map I-1605, scale 1:24,000.

  • Crone, A. J., Machette, M. N., Bonilla, M. G., Lienkaemper, J. J., Pierce, K. L., Scott, W. E., andBucknam, R. C. (1987),Surface Faulting Accompanying the Borah Peak Earthquake and Segmentation of the Lost River Fault, Central Idaho, Bull. Seismol., Soc. Am.77 739–770.

    Google Scholar 

  • De Polo, C. M., Clark, D. B., Slemmons, D. B., andRamelli, A. R. (1991),Historical Surface Faulting in the Basin and Range Province, Western North America: Implications for Fault Segmentation, J. Struct. Geol.13, 123–136.

    Google Scholar 

  • Evans, J. P., andNeves, D. S. (1992),Footwall Deformation along Willard Thrust, Sevier Orogenic Belt: Implications for Mechanisms, Timing and Kinematics, Geol. Soc. Am. Bull.104, 516–527.

    Google Scholar 

  • Gephart, J. W. (1990a),Stress and the Direction of Slip on Faults, Tectonics9, 845–858.

    Google Scholar 

  • Gephart, J. W. (1990b),FMSI: A Fortran Program for Inverting Fault/Slickenside and Earthquake Focal Mechanism Data to Obtain the Regional Stress Tensor, Computers and Geosci.16, 953–989.

    Google Scholar 

  • Gilbert, G. K. (1928),Studies of Basin-range Structure, U.S. Geol. Surv. Professional Paper153, 89 pp.

  • Grocott, J. (1981),Fracture Geometry of Pseudotachylyte Generation: A Study of Shear Fractures Formed during Seismic Events, J. Struct. Geol.3, 169–178.

    Google Scholar 

  • Janecke, S. U. (1993),Structures in Segment Boundary Zones of the Lost River and Lemhi Faults, East-Central Idaho, J. Geophys. Res.98, 16223–16238.

    Google Scholar 

  • King, G. C. P. (1986),Speculation on the Geometry of the Initiation and Termination of Earthquake Rupture and its Relation to Morphology and Geologic Structure, Pure Appl. Geophys.124, 567–585.

    Google Scholar 

  • Machette, M., Personius, S. F., Nelson, A. F., Schwartz, D. P., andLund, W. R. (1991),The Wasatch Fault Zone, Utah: Segmentation and Holocene Earthquakes, J. Struct. Geol.13, 137–149.

    Google Scholar 

  • Mabey, D. R. (1992),Subsurface geology along the Wasatch Fault area, Utah. InAssessment of Regional Earthquake Hazards and Risks Along the Wasatch Front, Utah (Gori, P. L., and Hays, W. W., eds.) (U.S. Geol. Surv. Professional Paper 1500).

  • Michael, A. J. (1984),Determination of Stress from Slip Data: Faults and Folds, J. Geophys. Res.89, 11,517–11,526.

    Google Scholar 

  • Nelson, A. F., andPersonius, S. F. (1990),Preliminary Geologic Map of the Weber Segment, Wasatch Fault Zone, Weber and Davis Counties, Utah, U.S. Geol. Surv. Map MF-2132, scale 1:50,000.

  • Nelson, A. R., andPersonius, S. F (1987),A Nonconservative Barrier to Holocene Rupture Propagation in the Northern Wasatch Fault Zone, Utah, Int. Un. Quat. Res. Int. Cong., 12th Congress Prog. w. Abst., 231.

  • Olig, S. S., andBruhn, R. L. (1989),Chronology of Structures in the Little Cottonwood Stock: Evidence for Stress Field Rotations within the Wasatch Fault Footwall, Geol. Soc. Am. Abst.21, 125.

    Google Scholar 

  • Parry, W. T., andBruhn, R. L. (1986),Pore Fluid and Seismogenic Characteristics of Fault Rock at Depth on the Wasatch Fault, Utah, J. Geophys. Res.91, 730–744.

    Google Scholar 

  • Pavlis, T. L., Serpa, L. F., andKeener, C. (1993),Role of Seismogenic Processes in Fault-rock Development, an Example from Death Valley, California, Geology21, 267–270.

    Google Scholar 

  • Personius, S. F. (1990),Surficial Geologic Map of the Brigham City Segment and Adjacent Parts of the Weber and Collinston Segments, Wasatch Fault Zone, Box Elder and Weber Counties, Utah, U.S. Geol. Surv. Map I-1979, scale 1:50,000.

  • Petit, J. P. (1987),Criteria for the Sense of Movement on Fault Surfaces in Brittle Rocks, J. Struct. Geol.9, 597–608.

    Google Scholar 

  • Pollard, D. D., Saltzer, S. D., andRubin, A. M. (1993),Stress Inversion Methods: Are they Based on Faulty Assumptions?, J. Struct. Geol.15, 1045–1054.

    Google Scholar 

  • Power, W. L., andTullis, T. E. (1992),The Contact between Opposing Fault Surfaces at Dixie Valley, Nevada, and Implications for Fault Mechanics, J. Geophys. Res.97, 15425–15435.

    Google Scholar 

  • Reches, Z. (1987),Determination of the Tectonic Stress Tensor from Slip along Faults that Obey the Coulomb Yield Condition, Tectonics6, 849–861.

    Google Scholar 

  • Ren, X., Kowallis, B. J., andBest, M. G. (1989),Paleostress History of the Basin and Range Province in Western Utah and Eastern Nevada, Geology17, 487–490.

    Google Scholar 

  • Schirmer, T. W. (1988),Structural Analysis Using Thrust-fault Hanging Wall Sequences Diagrams: Ogden Duplex, Wasatch Range, Utah, Am. Assoc. Pet. Geol. Bull.72, 573–585.

    Google Scholar 

  • Scholz, C. H.,The Mechanics of Earthquakes and Faulting (Cambridge University Press 1990) 439 pp.

  • Schwartz, D. P., andCoppersmith, K. J. (1984),Fault Behavior and Characteristic Earthquakes—Examples from the Wasatch and San Andreas Fault Zones, J. Geophys. Res.89, 5681–5698.

    Google Scholar 

  • Smith, R. B., andBruhn, R. L. (1984),Intraplate Extensional Tectonics of the Eastern Basin-range: Inferences on Structural Style from Seismic Reflection Data, Regional Tectonics, and Thermal-mechanical Models of Brittle-ductile Deformation, J. Geophys. Res.89, 5733–5762.

    Google Scholar 

  • Susong, D. D., Janecke, S. U., andBruhn, R. L. (1990),Structure of a Fault Segment Boundary in the Lost River Fault Zone, and Possible Effect on the 1983 Borah Peak Earthquake Rupture, Bull. Seismol. Soc. Am.80, 57–68.

    Google Scholar 

  • Wheeler, R. L., andKrystinik, K. B. (1988),Segmentation of the Wasatch Fault Zone, Utah—Summaries, Analyses, and Interpretation of Geologic and Geophysical Data U.S. Geol. Surv. Bulletin1827. 47 pp.

  • Yonkee, W. A. (1992),Basement-cover Relations, Sevier Orogenic Belt, Northern Utah, Geol. Soc. Am. Bull.104, 280–302.

    Google Scholar 

  • Zoback, M. L. (1983),Structure and Cenozoic tectonism along the Wasatch Fault zone, Utah. InTectonic and Stratigraphic Studies in the Eastern Great Basin (Todd, V. R., and Howard, K. A., eds.) (Geol. Soc. Am. Memoir157) pp. 3–27.

  • Zoback, M. L. (1989),State of Stress and Modern Deformation in the Northern Basin and Range Province, J. Geophys. Res.94, 7105–7128.

    Google Scholar 

  • Zoback, M. L., Anderson, R. E., andThompson, G. A. (1981).Cainozoic Evolution of the State of Stress and Style of Tectonism of the Basin and Range Province of the Western United States, Roy. Soc. Lond. Phil. Trans. Ser.A300, 407–434.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Evans, J.P., Langrock, H. Structural analysis of the Brigham City-Weber segment boundary zone, Wasatch normal fault, Utah: Implications for fault growth and structure. PAGEOPH 142, 663–685 (1994). https://doi.org/10.1007/BF00876059

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00876059

Key words

Navigation