Skip to main content
Log in

Catabolism of benzene compounds by ascomycetous and basidiomycetous yeasts and yeastlike fungi

A literature review and an experimental approach

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

A literature review is given on growth of yeasts on benzene compounds and on the catabolic pathways involved. Additionally, a yeast collection was screened for assimilation of phenol and 3-hydroxybenzoic acid. Fifteen ascomycetous and thirteen basidiomycetous yeast species were selected and were tested for growth on 84 benzene compounds. It appeared that 63 of these compounds supported growth of one or more yeast species. The black yeastExophiala jeanselmei assimilated 54 of these compounds.

The catechol branch of the 3-oxoadipate pathway and its hydroxyhydroquinone variant were involved in phenol and resorcinol catabolism of ascomycetes as well as of basidiomycetes. However, these two groups of yeasts showed characteristic differences in hydroxybenzoate catabolism. In the yeastlike fungusE. jeanselmei and in basidiomycetes of the generaCryptococcus, Leucosporidium andRhodotorula, the protocatechuate branch of the 3-oxoadipate pathway was induced by growth on 3- and 4-hydroxybenzoic acids. In threeTrichosporon species and in all ascomycetous yeasts tested, 4-hydroxybenzoic acid was catabolyzed via protocatechuate and hydroxyhydroquinone. These yeasts were unable to cleave protocatechuate. 3-Hydroxybenzoic and 3-hydroxycinnamic acids were catabolized in ascomycetous yeasts via the gentisate pathway, but in basidiomycetes via protocatechuate.

Incomplete oxidation of phenol, some chlorophenols, cresols and xylenols was observed in cultures ofCandida parapsilosis growing on hydroquinone. Most compounds transformed by the growing culture were also converted by the phenol monooxygenase present in cell-free extracts of this yeast. They did not support growth.

The relationship between the ability of ascomycetous yeasts to assimilate n-alkanes, amines and benzene compounds, and the presence of Coenzyme Q9 is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Anderson JJ & Dagley S (1980) Catabolism of aromatic acids inTrichosporon cutaneum. J. Bacteriol. 141: 534–543

    PubMed  Google Scholar 

  • Anderson JJ & Dagley S (1981) Catabolism of tryptophan, anthranilate and 2,3-dihydroxybenzoate inTrichosporon cutaneum. J. Bacteriol. 146: 291–297

    PubMed  Google Scholar 

  • Cain RB, Bilton RF & Darrah JA (1968) The metabolism of aromatic acids by microorganisms: metabolic pathways in the fungi. Biochem. J. 108: 797–828

    PubMed  Google Scholar 

  • Catellani D, Fiechi A & Galli E (1971) (+)-γ-Carboxymethyl-γ-methyl-δ-butenolide, a 1,2-ring-fission product of 4-methylcatechol byPseudomonas desmolyticum. Biochem. J. 121: 89–92

    PubMed  Google Scholar 

  • Chapman PJ & Ribbons DW (1974) Metabolism of resorcinylic compounds by bacteria: alternative pathways for resorcinol catabolism inPseudomonas putida. J. Bacteriol. 125: 985–998

    Google Scholar 

  • Cook KA & Cain RB (1974) Regulation of aromatic metabolism in the fungi: metabolic control of the 3-oxoadipate pathway in the yeastRhodotorula mucilaginosa. J. Gen. Microbiol. 85: 37–50

    PubMed  Google Scholar 

  • Di Menna ME (1959) Some physiological characters of yeasts from soils and allied habitats. J. Gen. Microbiol. 20: 13–23

    PubMed  Google Scholar 

  • Durham DR (1984) Initial reactions involved in the dissimilation of mandelate byRhodotorula graminis. J. Bacteriol. 160: 778–780

    PubMed  Google Scholar 

  • Durham DR, McNamee CG & Stewart DB (1984) Dissimilation of aromatic compounds inRhodotorula graminis: biochemical characterization of pleiotropically negative mutants. J. Bacteriol. 160: 771–777

    PubMed  Google Scholar 

  • Gaal A & Neujahr HY (1979) Metabolism of phenol and resorcinol inTrichosporon cutaneum. J. Bacteriol. 137: 13–21

    PubMed  Google Scholar 

  • Gaal A & Neujahr HY (1980)cis,cis-Muconate cyclase fromTrichosporon cutaneum. Biochem. J. 191: 37–43

    PubMed  Google Scholar 

  • Gaal A & Neujahr HY (1981) Induction of phenol-metabolizing enzymes inTrichosporon cutaneum. Arch. Microbiol. 130: 54–58

    PubMed  Google Scholar 

  • Gross SR, Gafford RD & Tatum EL (1956) The metabolism of protocatechuic acid byNeurospora. J. Biol. Chem. 219: 781–795

    PubMed  Google Scholar 

  • Guého E, Smith M Th, de Hoog GS, Billon-Grand G, Christen R & Batenburg-van der Vegte WH (1992) Contributions to a revision of the genusTrichosporon. Antonie van Leeuwenhoek 61: 289–316

    PubMed  Google Scholar 

  • Harris G & Ricketts RW (1962) Metabolism of phenolic compounds by yeasts. Nature No 4870, 473–474

    Google Scholar 

  • Hashimoto K (1970) Oxidation of phenols by yeast. I. A new oxidation product from p-cresol by an isolated strain of yeast. J. Gen. Appl. Microbiol. 16: 1–13

    Google Scholar 

  • Hashimoto K (1973) Oxidation of phenols by yeast. II. Oxidation of cresols byCandida tropicalis. J. Gen. Appl. Microbiol. 19: 171–187

    Google Scholar 

  • Henderson MEK (1961a) Isolation, identification and growth of some hyphomycetes and yeast-like fungi which utilize aromatic compounds related to lignin. J. Gen. Microbiol. 26: 149–154

    PubMed  Google Scholar 

  • Henderson MEK (1961b) The metabolism of aromatic compounds related to lignin by some hyphomycetes and yeast-like fungi from soil. J. Gen. Microbiol. 26: 155–165

    PubMed  Google Scholar 

  • Hofmann KH & Krüger AK (1985) Induction and inactivation of phenol hydroxylase and catechol oxygenase inCandida maltosa L4 in dependence on the carbon source. J. Basic Microbiol. 25: 373–379

    Google Scholar 

  • Hofmann KH & Vogt U (1987) Induction of phenol assimilation in chemostat cultures ofCandida maltosa L4. J. Basic Microbiol. 27: 441–447

    Google Scholar 

  • Hofmann KH & Vogt U (1988) Abbau von Phenol durch Hefen in Gegenwart von n-Hexadekan unter Wachstumsbedingungen im Rührreaktor. Zentralbl. Mikrobiol. 143: 87–91

    Google Scholar 

  • Hofmann KH & Schauer F (1988) Utilization of phenol by hydrocarbon-assimilating yeasts. Antonie van Leeuwenhoek 54: 179–188

    PubMed  Google Scholar 

  • Hopper DJ, Chapman PJ & Dagley S (1968) Enzymatic formation of D-malate. Biochem. J. 110: 798–800

    PubMed  Google Scholar 

  • Jayasankar NP & Bhat JV (1966) Isolation and properties of catechol-cleaving yeasts from coir rets. Antonie van Leeuwenhoek 32: 125–134

    PubMed  Google Scholar 

  • Karasevich YN & Ivoilov US (1977) Preparatory metabolism of p-hydroxybenzoic acid inCandida tropicalis. Microbiology 46: 687–695

    Google Scholar 

  • Kluyver AJ & van Zijp JCM (1951) The production of homogentisic acid out of phenylacetic acid byAspergillus niger. Antonie van Leeuwenhoek 17: 315–324

    PubMed  Google Scholar 

  • Krug M & Straube G (1986) Degradation of phenolic compounds by the yeastCandida tropicalis HP 15. II. Some properties of the first two enzymes of the degradation pathway. J. Basic Microbiol. 26: 271–281

    PubMed  Google Scholar 

  • Lack L (1961) Enzymaticcis-trans isomerization of maleyl pyruvic acid. J. Biol. Chem. 236: 2835–2840

    PubMed  Google Scholar 

  • Marusich WC, Jensen RA & Zamir LO (1981) Induction of phenylalanine ammonia-lyase during utilization of phenylalanine as a carbon or nitrogen source inRhodotorula glutinis. J. Bacteriol. 146: 1013–1019

    PubMed  Google Scholar 

  • Middelhoven WJ, de Kievit H & Biesbroek AL (1985) Yeast species utilizing uric acid, adenine, n-alkylamines or diamines as sole source of carbon and energy. Antonie van Leeuwenhoek 51: 289–301

    PubMed  Google Scholar 

  • Middelhoven WJ, de Hoog GS & Notermans S (1989) Carbon assimilation and extracellular antigens of some yeast-like fungi. Antonie van Leeuwenhoek 55: 165–175

    PubMed  Google Scholar 

  • Middelhoven WJ & Notermans S (1988) Species-specific extracellular antigen production by ascomycetous yeasts, detected by ELISA. J. Gen. Appl. Microbiol. 34: 15–26

    Google Scholar 

  • Middelhoven WJ, de Jong IM & de Winter M (1991)Arxula adeninivorans, a yeast assimilating many nitrogenous and aromatic compounds. Antonic van Leeuwenhoek 59: 129–137

    Google Scholar 

  • Middelhoven WJ, Koorevaar M & Schuur GW (1992a) Degradation of benzene compounds by yeasts in acidic soils. Plant and Soil 145: 37–43

    Google Scholar 

  • Middelhoven WJ, Coenen A, Kraakman B & Sollewijn Gelpke MD (1992b) Degradation of some phenols and hydroxybenzoates by the imperfect ascomycetous yeastsCandida parapsilosis andArxula adeninivorans: evidence for an operative gentisate pathway. Antonie van Leeuwenhoek 62: 181–187

    PubMed  Google Scholar 

  • Mills C, Child JJ & Spencer JFT (1971) The utilization of aromatic compounds by yeasts. Antonie van Leeuwenhoek 37: 281–287

    PubMed  Google Scholar 

  • Moore K, Subba Rao PV & Towers GHN (1968) Degradation of phenylalanine and tyrosine bySporobolomyces roseus. Biochem. J. 106: 507–514

    PubMed  Google Scholar 

  • Mörsen A & Rehm H-J (1990) Degradation of phenol by a defined mixed culture immobilized by adsorption on activated carbon and sintered glass. Appl. Microbiol. Biotechnol. 33: 206–212

    Google Scholar 

  • Mörtberg M & Neujahr HY (1987) In situ and in vitro kinetics of phenol hydroxylase. Biochem. Biophys. Res. Commun. 146: 41–46

    PubMed  Google Scholar 

  • Mörtberg & Neujahr (1988) Activation enthalpies and pH dependence of phenol hydroxylase fromTrichosporon cutaneum, in vitro and in situ. FEBS Letters 242: 75–78

    PubMed  Google Scholar 

  • Neujahr HY & Gaal A (1973) Phenol hydroxylase from yeast. Purification and properties of the enzyme fromTrichosporon cutaneum. Europ. J. Biochem. 35: 386–400

    PubMed  Google Scholar 

  • Neujahr HY & Gaal A (1975) Phenol hydroxylase from yeast. Sulfhydryl groups in phenol hydroxylase fromTrichosporon cutaneum. Europ. J. Biochem. 58: 351–357

    PubMed  Google Scholar 

  • Neujahr HY & Kjellén KG (1978) Phenol hydroxylase from yeast. Reaction with phenol derivatives. J. Biol. Chem. 253: 8835–8841

    PubMed  Google Scholar 

  • Neujahr HY & Kjellén KG (1980) Phenol hydroxylase from yeast. A lysyl residue essential for binding of reduced nicotinamide adenine dinucleotide phosphate. Biochemistry 19: 4967–4972

    PubMed  Google Scholar 

  • Neujahr HY, Lindsjö S & Varga JM (1974) Oxidation of phenols by cells and cell-free extracts fromCandida tropicalis. Antonie van Leeuwenhoek 40: 209–216

    PubMed  Google Scholar 

  • Neujahr HY & Varga JM (1970) Degradation of phenol by intact cells and cell-free preparations ofTrichosporon cutaneum. Europ. J. Biochem. 13: 37–44

    PubMed  Google Scholar 

  • Powlowski JB & Dagley S (1985) β-Ketoadipate pathway inTrichosporon cutaneum modified for methyl-substituted metabolites. J. Bacteriol. 163: 1126–1135

    PubMed  Google Scholar 

  • Powlowski JB, Ingebrand J & Dagley S (1985) Enzymology of the β-Ketoadipate pathway inTrichosporon cutaneum. J. Bacteriol. 163: 1136–1141

    PubMed  Google Scholar 

  • Sahasrabudhe SR, Lala D & Modi VV (1986) Degradation of orcinol byAspergillus niger. Canad. J. Microbiol. 32: 535–538

    Google Scholar 

  • Sejlitz T & Neujahr HY (1987) Phenol hydroxylase from yeast. A model for phenol binding and an improved purification procedure. Europ. J. Biochem. 170: 343–349

    PubMed  Google Scholar 

  • Skoda M & Udaka S (1980) Preferential utilization of phenol rather than glucose byTrichosporon cutaneum possessing a partially constitutive catechol-1,2-dioxygenase. Appl. Environm. Microbiol. 39: 1129–1133

    Google Scholar 

  • Spånning A & Neujahr HY (1987) Growth and enzyme synthesis during continuous growth ofTrichosporon cutaneum on phenol. Biotechnol. Bioengin. 29: 464–468

    Google Scholar 

  • Sparnins VL, Anderson JJ, Omans J & Dagley S (1978) Degradation of 4-phenylacetic acid byTrichosporon cutaneum. J. Bacteriol. 136: 449–451

    PubMed  Google Scholar 

  • Sparnins VL, Burbee DG & Dagley S (1979) Catabolism of L-tyrosine inTrichosporon cutaneum. J. Bacteriol. 138: 425–430

    PubMed  Google Scholar 

  • Subba Rao PV, Fritig B, Vose JR & Towers GHN (1971) An aromatic 3,4-dioxygenase fromTilletiopsis washingtonensis — oxidation of 3,4-dihydroxyphenylacetic acid to β-carboxymethylmuconolactone. Phytochemistry 10: 51–56

    Google Scholar 

  • Thatcher DR & Cain RB (1974) Metabolism of aromatic compounds by fungi. I. Purification and physical properties of 3-carboxy-cis-cis-muconate cyclase fromAspergillus niger. Europ. J. Biochem. 48: 549–556

    PubMed  Google Scholar 

  • Utkin LM (1950) Homogentisic acid in the metabolism of molds. Biokhymia 15: 330–333

    Google Scholar 

  • Varga JM & Neujahr HY (1970) Isolation from soil of phenolutilizing organisms and metabolic studies on the pathway of phenol degradation. Plant and Soil 33: 565–571

    Google Scholar 

  • Walker N (1973) Metabolism of chlorophenols byRhodotorula glutinis. Soil Biol. Biochem. 5: 525–530

    Google Scholar 

  • Yang RD & Humphrey AE (1975) Dynamic and steady state studies of phenol degradation in pure and mixed cultures. Biotechnol. Bioengin. 17: 1211–1235

    Google Scholar 

  • Zimmermann R (1958) Ueber phenolspaltende Hefen. Naturwissenschaften 45: 165

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Middelhoven, W.J. Catabolism of benzene compounds by ascomycetous and basidiomycetous yeasts and yeastlike fungi. Antonie van Leeuwenhoek 63, 125–144 (1993). https://doi.org/10.1007/BF00872388

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00872388

Key words

Navigation