Skip to main content
Log in

DIVERSITY: A new method for evaluating sensitivity of groundwater to contamination

  • Original Paper
  • Published:
Environmental Geology

Abstract

This study outlines an improved method, DIVERSITY, for delineating and rating groundwater sensitivity. It is an acronym for DIspersion/VElocity-Rated SensitivITY, which is based on an assessment of three aquifer characteristics: recharge potential, flow velocity, and flow directions. The primary objective of this method is to produce sensitivity maps at the county or state scale that illustrate intrinsic potential for contamination of the uppermost aquifer. Such maps can be used for recognition of aquifer sensitivity and for protection of groundwater quality. We suggest that overriding factors that strongly affect one or more of the three basic aquifer characteristics may systematically elevate or lower the sensitivity rating. The basic method employs a three-step procedure: (1) Hydrogeologic settings are delineated on the basis of geology and groundwater recharge/discharge position within a terrane. (2) A sensitivity envelope or model for each setting is outlined on a three-component rating graph. (3) Sensitivity ratings derived from the envelope are extrapolated to hydrogeologic setting polygons utilizing overriding and key factors, when appropriate. The three-component sensitivity rating graph employs two logarithmic scales and a relative area scale on which measured and estimated values may be plotted. The flow velocity scale ranging from 0.01 to more than 10,000 m/d is the keystone of the rating graph. Whenever possible, actual time-of-travel values are plotted on the velocity scale to bracket the position of a sensitivity envelope. The DIVERSITY method was developed and tested for statewide use in Kentucky, but we believe it is also practical and applicable for use in almost any other area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aley T (1992) Groundwater tracing at the former Rockwell International Facility, Russellville, Kentucky. Consultant report prepared by Ozark Underground Laboratory, Protem, Missouri, for Geraghty & Miller, Inc., Milwaukee, Wisconsin. 77 pp

    Google Scholar 

  • Aller L, Bennett T, Lehr JH and Petty RJ (1985) DRASTIC: A standardized system for evaluating groundwater pollution potential using hydrogeologic settings; Robert S. Kerr Environmental Research Laboratory, Environmental Protection Agency, National Water Well Association, Cooperative Agreement CR-810715-01, Ada, Oklahoma. 163 pp

  • Brucker RW, Hess JW and White WB (1972) Role of vertical shafts in the movement of ground water in carbonate aquifers. Ground Water 10:5–13

    Google Scholar 

  • Crawford NC, Groves CG, Feeney TP and Keller BJ (1987) Hydrogeology of the Lost River karst groundwater basin, Warren County, Kentucky. Report prepared for Kentucky Division of Water and Barren River Area Development District. 229 pp

  • Couch AW (1988) A DRASTIC evaluation for parts of Bourbon, Fayette and Scott counties, Kentucky: The Centerville, Georgetown, Lexington East and Lexington West Quadrangles. MS thesis, Geology. University of Kentucky, Lexington. 70 pp

    Google Scholar 

  • Davis RW (1987) Movement of ground water in coal-bearing rocks near Fishtrap Lake in Pike County, Kentucky US Geological Survey Water-Resources Investigations Report 87-4084. 24 pp

  • Everett AG (1987) Some significant attributes of aquifers as related to wellhead protection considerations. Unpublished Report to the US Environmental Protection Agency, Office of Ground-Water Protection. In: Guidelines for delineation of wellhead protection areas, 1987, US Environmental Protection Agency (440/6-87-010), Washington, DC

    Google Scholar 

  • Everts CJ, Kanwar RS, Alexander EC Jr and Alexander SC (1989) Comparison of tracer mobilities under laboratory and field conditions. J Environ Qual 18(4):491–498

    Google Scholar 

  • Gish TJ and Shirmohammadi A (Eds) (1991) Preferential flow: Proceedings of the national symposium. St. Joseph, Michigan: American Society of Agricultural Engineers. 410 pp

    Google Scholar 

  • Hoyer BE and Hallberg GR (1991) Groundwater vulnerability regions of Iowa. Iowa Department of Natural Resources and Geological Survey Bureau, Iowa City (map)

    Google Scholar 

  • Porcher EN (1989) Ground water contamination susceptibility in Minnesota. Minnesota Pollution Control Agency, St. Paul. (map)

    Google Scholar 

  • Quinlan JF (1990) Hydrologic evaluation of Patterson Property proposed for landfilling near Dandridge (Tennessee): Preliminary report and interpretation of tracing results. Letter report of August 15, to City of Dandridge, prepared for ATEC Environmental Consultants, Nashville, Tennessee

  • Quinlan JF (1991) DRASTIC evaluation of potential for groundwater pollution from landfilling in Hart County, Kentucky. Contract report prepared for US Environmental Protection Agency, Tennessee Valley Authority, Knoxville, Tennessee, and Public Welfare Foundation, Washington, DC, by American Cave Conservation Association, Horse Cave, Kentucky. 12 pp

  • Quinlan JF and Aley T (1987) Discussion of “A new approach to the disposal of solid waste on land,” by Heath RC and Lehr JH. Ground Water 25(5):615–616

    Google Scholar 

  • Quinlan JF and Ray JA (1981) Groundwater basins in the Mammoth Cave Region, Kentucky. Friends of the Karst Occasional Pub. 1. (map)

  • Quinlan JF, Ewers RO, Ray JA, Powell RL and Krothe NC (1983) Ground-water hydrology and geomorphology of the Mammoth Cave Region, Kentucky, and of the Mitchell Plain, Indiana. In Shaver RH and Sunderman JA (Eds), Field trips in Midwestern geology: Bloomington, Indiana vol 2. Geological Society of America and Indiana Geological Survey, pp 1–85

  • Quinlan JF, Smart PL, Schindel GM, Alexander EC Jr, Edwards AJ and Smith AR (1992) Recommended administrative/regulatory definition of karst aquifer, principles for classification of carbonate aquifers, practical evaluation of vulnerability of karst aquifers, and determination of optimum sampling frequency at springs. Hydrology, ecology, monitoring, and management of ground water. In: Quinlan JF and Stanley A (Eds), Karst terranes conference (3rd, Nashville, Tennessee, 1991), proceedings. Dublin, Ohio: National Ground Water Association. pp 573–635

    Google Scholar 

  • Ray JA and O'dell PW (1993) Dispersion/velocity-rated groundwater sensitivity. In: Beck BF (Ed), Applied karst geology, multidisciplinary conference on sinkholes and the engineering and environmental impacts of karst (4th, Panama City, Florida, 1993), Proceedings. Rotterdam: Balkema. pp 189–198

    Google Scholar 

  • Ray JA, Webb JS and O'dell PW (1993) Generalized groundwater sensitivity regions of Kentucky. Preliminary map, prepared for Kentucky Division of Water, Groundwater Branch, Frankfort, Kentucky

    Google Scholar 

  • Rundquist DC, Rodekohr DA, Di L, Peters AJ, Ehrman RL and Murray G (1991) Statewide groundwater-vulnerability assessment in Nebraska using the DRASTIC/GIS model. Geocarto Int 6(2): 51–58

    Google Scholar 

  • Schmidt RR and Kessler K (1987) Groundwater contamination susceptibility in Wisconsin (Wisconsin's groundwater management plan, report No. 5: PUBL-WR-177-87). Wisconsin Geologicaland Natural History Survey, Madison, Wisconsin. 27 pp (map)

    Google Scholar 

  • Sendlein LVA (1989) DRASTIC analysis for application by state government, final report. Groundwater Branch, Division of Water, Division of Waste, Natural Resources and Environmental Protection Cabinet, Kentucky, Frankfort, Kentucky. 59 pp

    Google Scholar 

  • Sendlein LVA (1992) Analysis of DRASTIC and wellhead protection methods applied to a karst setting. Hydrology, ecology, monitoring, and management of ground water. In Quinlan JF and Stanley A (Eds), Karst terranes conference (3rd, Nashville, Tennessee, 1991), proceedings. Dublin, Ohio: National Ground Water Association, pp 669–683

    Google Scholar 

  • Smart CC (1988) Quantitative tracing of the Maligne karst system, Alberta, Canada. J Hydrol 98:185–204

    Google Scholar 

  • Smith JH and Crawford NC (1989) “DRASTIC”: An assessment of groundwater pollution vulnerability in Warren County, Kentucky. Warren County Comprehensive Plan, Technical Report, Warren County City-County Planning Commission, Bowling Green, Kentucky. 35 pp

    Google Scholar 

  • Songer NL and Ewers RO (1987) Seepage velocities in stress-relief fractures in the Eastern Kentucky Coal Field. Division of Water, Groundwater Branch, Frankfort, Kentucky. MOA 005131. 87 pp

    Google Scholar 

  • Thomas GW and Phillips RE (1979) Consequences of water movement in macropores. J Environ Qual 8(2): 149–152

    Google Scholar 

  • Thrailkill J, Spangler LE, Hopper WM Jr, McCann MR, Troester JW and Gouzie DR (1982) Groundwater in the Inner Bluegrass karst region, Kentucky. Research report No. 136, University of Kentucky Water Resources Research Institute, Lexington, Kentucky. 108 pp

    Google Scholar 

  • Thrailkill J, Byrd PE, Sullivan SB, Spangler LE, Taylor CJ, Nelson GK and Pogue JR (1983) Studies in dye-tracing techniques and karst hydrogeology. Research report No. 140, University of Kentucky Water Resources Institute, Lexington, Kentucky. 89 pp

    Google Scholar 

  • US EPA (Environmental Protection Agency) (1991) A review of methods for assessing the sensitivity of aquifers to pesticide contamination. Preliminary document No. 68-CO-0083. Washington, DC 73 pp

  • Watson KW and Luxmore RJ (1986) Estimating macroporosity in a forest watershed by use of a tension infiltrometer: Soil Sci Soc J 50:578–582

    Google Scholar 

  • Wells ER and Krothe NC (1989) Seasonal fluctuation in ∂15 N of groundwater nitrate in a mantled karst aquifer due to macropore transport of fertilizer-derived nitrate. J Hydrol 112:191–201

    Google Scholar 

  • White WB (1988) Geomorphology and hydrology of karst terrains. New York: Oxford University Press. p 154

    Google Scholar 

  • Worthington SRH (1991) Karst hydrogeology of the Canadian Rocky Mountains. Unpublished PhD thesis, geography. McMaster University, Hamilton, Ontario. 227 pp

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ray, J.A., O'dell, P.W. DIVERSITY: A new method for evaluating sensitivity of groundwater to contamination. Geo 22, 345–352 (1993). https://doi.org/10.1007/BF00767508

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00767508

Key words

Navigation