Skip to main content
Log in

Chemoattraction of a bactivorous ciliate to bacteria surface compounds

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The locomotory response to cell surface compounds extracted from two prey species,Vibrio natriegens andVibrio neries, was tested for a bacterivorous ciliate,Pseudochnilembus marinus Thompson 1966. Chemoattraction of the ciliate to the surface compounds stabilized in agarose baits was not equal for the two prey species. Fractionation of the extracts suggested the attractive substance was a high molecular weight compound. The expression of the differential response was dependant on the physiological condition and prior prey species exposure of the ciliate test population. The recognition and response to material normally found on the surface of prey cells supports evidence for the involvement of chemical sensing of gradients of prey particles and dissolved compounds of prey origin in the natural swimming behavior of bacterivorous ciliates. The prey species-specific reactions and influence of ciliate physiological state on chemosensory response suggest ciliate-bacteria interactions may be more complex than preciously assumed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Almagor, M., A. Ron & J. Bar-Tana, 1981. Chemotaxis inTetrahymena. Cell Motil. 1: 261–268.

    Google Scholar 

  • Antipa, G. A., K. Martin & M. T. Rintz, 1983. A note on the possible ecological significance of chemotaxis in certain ciliated protozoa. J. Protozool. 30: 55–57.

    Google Scholar 

  • Bragg, A. N., 1936. Selection of food inParamecium trichium. Physiol. Zool. 9: 433–442.

    Google Scholar 

  • Buskey, E. J. & D. K. Stoecker, 1988. Locomotory patterns of the planktonic ciliateFavella sp.: adaptations for remaining within food patches. Bull. Mar. Sci. 43: 783–796.

    Google Scholar 

  • Cavanaugh, G. M. ed., 1956. Formulae and Methods VI of the Marine Biological Laboratory Chemical Room. MBL, Woods Hole, MA, 84 pp.

    Google Scholar 

  • Doughty, M. J. & S. Dryl, 1981. Control of ciliary activity inParamecium: an analysis of chemosensory transduction in a eukaryotic unicellular organism. Prog. Neurobiol. 16: 1–115.

    PubMed  Google Scholar 

  • Fenchel, T., 1969. The ecology of marine microbenthos IV. Structure and function of the benthic ecosystem, its chemical and physical factors and the microfauna communities with special reference to the ciliated protozoa. Ophelia 6: 1–182.

    Google Scholar 

  • Fenchel, T. & P. R. Jonsson, 1988. The functional biology ofStrombidium sulcatum, a marine oligotrich ciliate (Ciliophora, Oligotrichina). Mar. Ecol. Prog. Ser. 48: 1–15.

    Google Scholar 

  • Fisher, E. S. & D. A. Lauffenburger, 1987. Mathematical analysis of cell-target encounter rates in two dimensions. The effect of chemotaxis. Biophys. J. 51: 705–716.

    PubMed  Google Scholar 

  • Forsberg, C. W., J. W. Costerton & R. A. MacLeod, 1970. Separation and localization of cell wall layers of a Gram-negative bacterium. J. Bact. 104: 1338–1353.

    Google Scholar 

  • Hellung-Larsen, P., V. Leick & N. Tommerup, 1986. Chemoattraction inTetrahymena: on the role of chemokinesis. Biol Bull. 170: 357–367.

    Google Scholar 

  • Jackson, G. A., 1989. Simulating chemosensory response of marine microorganisms. Limnol. Oceanogr. 32: 1253–1266.

    Google Scholar 

  • Jennings, H. S., 1906. Behavior of Lower Animals, Indiana University Press, Bloomington.

    Google Scholar 

  • Leick, V., 1988. Gliding inTetrahymena thermophila: oriented chemokinesis in a ciliate. Eur. J. Protistol. 23: 354–360.

    Google Scholar 

  • Leick, V. & J. Helle, 1983. A quantitative assay for ciliate chemotaxis. Anal. Biochem. 135: 466–469.

    PubMed  Google Scholar 

  • Leick, V. & P. Hellung-Larsen, 1985. Chemosensory responses inTetrahymena: the involvement of peptides and other signal substances. J. Protozool. 32: 550–553.

    Google Scholar 

  • Levandowsky, M. & D. C. R. Hauser, 1978. Chemosensory responses of swimming algae and protozoa. Int. Rev. Cytol. 53: 145–210.

    PubMed  Google Scholar 

  • Levandowsky, M., T. Cheng, A. Kehr, J. Kim, L. Gardner, L. Silvern, L. Tsang, G. Lai, C. Chung & E. Prakash, 1984. Chemosensory responses to amino acids and certain amines by the ciliateTetrahymena: a flat capillary assay. Biol. Bull. 167: 322–330.

    Google Scholar 

  • Lindstedt, K. J., 1971. Chemical control of feeding behavior. Comp. Biochem. Physiol. 39(A): 553–581.

    Google Scholar 

  • Loeb, M. R., J. Kilner, 1979. Effect of growth medium on the relative polypeptide composition of cellular outer membrane and released outer membrane material inEscherichia coli. J. Bact. 137: 1031–1034.

    PubMed  Google Scholar 

  • Machemer, H., 1988a. Electrophysiology. In H.-D.Gotz (ed.),Paramecium. Springer-Verlag, Berlin, FRG., pp 185–215.

    Google Scholar 

  • Machemer, H., 1988b. Motor control of cilia. In H.-D. Gortz (ed.),Paramecium. Springer-Verlag, Berlin, FRG., pp 216–235.

    Google Scholar 

  • Metalnikov, M. S., 1914. Les infusoires peuvent-ils apprendre a choisir leur nourriture? Archiv Protistenk. 34: 60–78.

    Google Scholar 

  • Nast, C. C. & L. E. LeDuc, 1988. Chemotactic Peptides, mechanisms, functions, and possible role in inflammatory bowel disease. Digest. Diseas. Sci. 33: 50S-57S.

    Google Scholar 

  • Nelson, J. D.Jr. & R. A. MacLeod, 1977. Distribution of lipopolysaccharide and detection of a new subfraction in the cell envelope of a marine Pseudomonad. J. Bact. 129: 1059–1065.

    PubMed  Google Scholar 

  • Rasmussen, L. & T. A. Klut, 1970. Particulate material as a prerequisite for rapid cell multiplication inTetrahymena cultures. Exp. Cell. Res. 59: 457–463.

    PubMed  Google Scholar 

  • Roberts, R. B., P. H. Abelson, D. B. Cowrie, E. T. Bolton & R. J. Britten, 1963. Studies of Biosynthesis inEscherichia coli. Carnegie Institution Publication 607, 521 pp.

  • Rollins, D. M., J. C. Collbaugh, R. I. Walker & E. Weiss, 1983. Biphasic culture system for rapidCampylobacter cultivation. Appl. envir. Microbiol. 45: 284–289.

    Google Scholar 

  • Snyder, R. A. & E. B. Small, 1984. The response of protists to spatial heterogeneity produced by a gradient culture technique. J. Protozool. 31: 21A.

  • Tanabe, H., K. Kurihara & Y. Kobatake, 1980. Changes in membrane potential and membrane fluidity inTetrahymena pyriformis in association with chemoreception of hydrophobic stimuli: fluorescence studies. Biochemistry 19: 5339–5344.

    PubMed  Google Scholar 

  • Thompson, J. C., 1966a.Pseudocohnilembus marinus n. sp., a Hymenostome ciliate from the Virginia Coast. J. Protozool. 13: 443–465.

    Google Scholar 

  • Van Houten, J. & R. R. Preston, 1988. Chemokinesis. In: H.-D. Gortz (ed.),Paramecium. Springer-Verlag, Berlin, FRG., pp 282–300.

    Google Scholar 

  • Verity, P. G., 1988. Chemosensory behavior in marine planktonic ciliates. Bull. Mar. Sci. 43: 772–782.

    Google Scholar 

  • Wimpenny, J. W. T., J. P. Coombs & R. W. Lovitt, 1984. Growth and interactions of microorganisms in spatially heterogeneous ecosystems. In M. J. Klug & C. A. Reddy (eds.), Current Perspectives in Microbial Ecology, ASM, Washington, D.C., pp 291–299.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Snyder, R.A. Chemoattraction of a bactivorous ciliate to bacteria surface compounds. Hydrobiologia 215, 205–213 (1991). https://doi.org/10.1007/BF00764855

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00764855

Key words

Navigation