Skip to main content
Log in

Complex geometry, unification, and quantum gravity. I. The geometry of elementary particles

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The Poincaré group is replaced byU(3, 2), the pseudounitary extension of the de Sitter groupSO(3, 2), as internal and space-time symmetries are combined in a geometric setting which invalidates the no-go theorems. A new model of elementary particles as vertical vectors on the principal fiber bundleU(3, 2) →U(3, 2)/U(3, 1)×U(1) is introduced and their interactions via Lie bracket analyzed. The model accounts for the four known superselection rules: spin, electric charge, baryon number, and lepton number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abraham, R., and Marsden, J. (1979).Foundations of Mechanics, 2nd ed., Benjamin, New York.

    Google Scholar 

  • Barut, A. O. (1980). inSymmetries in Science (B. Gruber and R. S. Milman, eds.,), Plenum Press, New York.

    Google Scholar 

  • Bohm, A. (1986). Quantum mechanics and spectrum generating groups and supergroups, inSymmetries in Science II (B. Gruber and R. Lenczewski, eds.), Plenum Press, New York.

    Google Scholar 

  • Burgoyne, N. (1958).Nuovo Cimento,8, 607.

    Google Scholar 

  • Charon, J. E. (1988).Complex Relativity: Unifying All Four Physical Interactions, Paragon-House, New York.

    Google Scholar 

  • Coleman, S. (1967). The past of a delusion: Attempts to wed internal and space-time symmetries, inSymmetry Principles and Fundamental Particles (B. Kursunoglu and A. Perlmutter, ed.), Freeman, San Francisco.

    Google Scholar 

  • Dyson, F. (1966).Symmetry Groups in Particle Physics, Benjamin, New York.

    Google Scholar 

  • Foldy, L. L., and Wouthuysen, S. A. (1950).Physical Review,78, 29–36.

    Google Scholar 

  • Fubini, S., Hanson, A. J., and Jackiw, R. (1973).Physical Review D,7, 1732.

    Google Scholar 

  • Georgi, H. (1982).Lie Algebras in Particle Physics: From Isospin to Unified Theories, Benjamin/ Cummings, Menlo Park, California.

    Google Scholar 

  • Georgi, H., and Glashow, S. L. (1974).Physics Review Letters,32, 438.

    Google Scholar 

  • Gunaydin, M., and Saclioglu, C. (1982).Physics Letters,108B, 180.

    Google Scholar 

  • Halpern, L. (1983). Generalizations of gravitational theory based on group covariance, inGauge Theory and Gravitation (K. Kikkawa, N. Nakanishi, and H. Nariai, eds.), Springer-Verlag, New York.

    Google Scholar 

  • Hermann, R. (1972).Journal of Mathematical Physics,13, 97.

    Google Scholar 

  • Hermann, R. (1977). Appendix on quantum mechanics, in R. Nolan Wallach,Symplectic Geometry and Fourier Analysis, MathSci Press.

  • Hermann, R. (1980). Bohr-Sommerfeld quantization in general relativity and other nonlinear field and particle theories, inQuantum Theory and Gravitation (A. R. Marlow, ed.), Academic Press, New York.

    Google Scholar 

  • Kaiser, G. (1990).Quantum Physics, Relativity, and Complex Spacetime, North-Holland, Amsterdam.

    Google Scholar 

  • Kursunoglu, B. (1979). A non-technical history of the generalized theory of gravitation dedicated to the Albert Einstein centennial, inOn the Path of Albert Einstein (B. Kursunoglu, A. Perlmutter, and L. F. Scott, eds.), Plenum Press, New York.

    Google Scholar 

  • Lipkin, H. J. (1965).Physical Review,139B, 1633.

    Google Scholar 

  • Love, T. R. (1984).International Journal of Theoretical Physics,23, 801.

    Google Scholar 

  • Love, T. R. (1987). The geometry of elementary particles, Dissertation, University of California, Santa Cruz, California.

    Google Scholar 

  • Lurcat, F. (1964).Physics,1, 95–106.

    Google Scholar 

  • Pais, A. (1986).Inward Bound, Oxford University Press, New York.

    Google Scholar 

  • Pleblanski, J. (1975).Journal of Mathematical Physics,16, 2395–2402.

    Google Scholar 

  • Preparata, G. (1979). Quark-geometrodynamics: A new approach to hadrons and their interactions, inThe Ways of Subnuclear Physics (Antonio Zichichi, ed.), Plenum Press, New York.

    Google Scholar 

  • Rawnsley, J., Schmid, W., and Wolf, J. (1983).Journal of Functional Analysis,51, 1–114.

    Google Scholar 

  • Rosen, N. (1962).Annals of Physics,19, 165–172.

    Google Scholar 

  • Roman, P. (1980). Relativistic dynamical groups in quantum theory and some possible applications, inSymmetries in Science (B. Gruber and R. S. Milman, eds.), Plenum Press, New York, p. 327.

    Google Scholar 

  • Schweber, S. S. (1961).An Introduction to Relativistic Quantum Field Theory, Harper and Row, New York.

    Google Scholar 

  • Segal, I. E. (1963).Mathematical Problems of Relativistic Physics, American Mathematical Society, Providence, Rhode Island.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Love, T.R. Complex geometry, unification, and quantum gravity. I. The geometry of elementary particles. Int J Theor Phys 32, 63–88 (1993). https://doi.org/10.1007/BF00674397

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00674397

Keywords

Navigation