Skip to main content
Log in

Ionization of aqueous benzoic acid: Conductance and thermodynamics

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Molar conductances of dilute aqueous benzoic acid solutions are presented for temperatures from 5 to 80°C. The data have been analyzed to give acid dissociation constants as well as ΔH o, ΔS o, and ΔC op for the ionization process and the limiting conductance of the benzoate ion. The conductance-viscosity product changes less than 4% over the temperature range, indicating that the interaction of the benzoate ion with the solvent changes little if at all with increasing temperature. The pK a(m) vs.T data show that ΔH o decreases quadratically while ΔC op increases linearly withT although, over the 75°C range, ΔC op increases only about 6 cal-mole−1 deg−1 around an average of −37 cal-mole−1deg−1. The acid dissociation constants as derived from the conductance-molal concentration analysis show an average uncertainty of about 0.1% and are fitted to within about 0.01% by the equation

$$p{\text{K}}_{\text{a}} (m) = - 75.5422 + 3136.34/T + 28.7965 log T - 6.8139 {\text{x}} 10^{ - 3{\text{T}}} $$

whereT is the absolute temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. G. Brockman and M. Kilpatrick,Am. Chem. Soc. 56, 1483 (1934).

    Google Scholar 

  2. B. Saxton and H. F. Meier,J. Am. Chem. Soc. 56, 1918 (1934).

    Google Scholar 

  3. J. F. J. Dippy and F. R. Williams,J. Chem. Soc. 1888 (1934).

  4. G. H. Jeffrey and A. I. Vogel,Philos. Mag.,18, 901 (1934).

    Google Scholar 

  5. A. J. Ellis,J. Chem. Soc., 2299 (1963).

  6. B. S. Smolyakov,Izv. Sib. Otd. Akad. Nauk SSSR 2, 8 (1967).

    Google Scholar 

  7. B. S. Smolyakov and N. M. Primanchuk,Russ. J. Phys. Chem. 40, 331 (1966).

    Google Scholar 

  8. A. V. Jones and H. N. Parton,Trans. Faraday Soc. 48, 8 (1952).

    Google Scholar 

  9. R. A. Robinson and A. I. Biggs,Aust. J. Chem. 10, 128 (1957).

    Google Scholar 

  10. P. D. Bolton, K. A. Fleming, and F. M. Hall,J. Am. Chem. Soc. 94 1033 (1972).

    Google Scholar 

  11. J. G. Travers, K. G. McCurdy, D. Dolman, and L. G. Hepler,J. Solution Chem. 4, 267 (1975).

    Google Scholar 

  12. T. Matsui, H. C. Ko, and L. G. Hepler,Can. J. Chem. 52 2912 (1974).

    Google Scholar 

  13. C. S. Leung and E. Grunwald,J. Phys. Chem. 74, 687 (1970).

    Google Scholar 

  14. L. P. Fernandez and L. G. Hepler,J. Phys. Chem. 63, 110 (1959).

    Google Scholar 

  15. T. L. Cottrell, G. W. Drake, D. L. Levi, K. J. Tully, and J. H. Wolfenden,J. Chem. Soc. 1016 (1948).

  16. R. M. Fuoss,J. Phys. Chem. 79, 525 (1975); R. M. Fuoss,J. Phys. Chem. 79, 1983 (1975); R. M. Fuoss,J. Phys. Chem. 80, 2091 (1976).

    Google Scholar 

  17. B. A. Timimi,Electrochim. Acta. 19, 149 (1974).

    Google Scholar 

  18. D. J. G. Ives and P. G. N. Moseley,J. Chem. Soc. Faraday Trans. 1 72, 1132 (1976).

    Google Scholar 

  19. G. Jones and R. C. Josephs,J. Am. Chem. Soc. 50, 1049 (1928); D. H. Dike,Rev. Sci. Instrum. 2, 379 (1931).

    Google Scholar 

  20. C. A. Kraus and R. M. Fuoss,J. Am. Chem. Soc. 55, 21 (1933).

    Google Scholar 

  21. R. H. Stokes,J. Phys. Chem. 65, 1277 (1961).

    Google Scholar 

  22. J. E. Lind, J. J. Zwolenik, and R. M. Fuoss,J. Am. Chem. Soc. 81, 1557 (1959); Y. C. Chiu and R. M. Fuoss,J. Phys. Chem. 72, 7123 (1968).

    Google Scholar 

  23. R. L. Kay, B. J. Hales, and G. P. Cunningham,J. Phys. Chem. 71, 3925 (1967).

    Google Scholar 

  24. V. F. Hnizda and C. A. Kraus,J. Am. Chem. Soc. 71, 1565 (1949).

    Google Scholar 

  25. D. F. Evans and M. A. Matesich,Techniques of Electrochemistry, Vol. 2, E. Yeager and A. Salkind eds. (Wiley, New York, 1973), p. 43.

    Google Scholar 

  26. W. G. Housekeeper,Electr. Eng. 42, 954 (1923).

    Google Scholar 

  27. H. M. Daggett, E. J. Bair, and C. A. Kraus,J. Am. Chem. Soc. 73, 799 (1951).

    Google Scholar 

  28. D. F. Evans and M. A. Matesich,Techniques of Electrochemistry, Vol. 2, E. Yeager and A. Saekind, eds., (Wiley, New York, 1973), p. 48.

    Google Scholar 

  29. A. D. Pethybridge and D. J. Spiers,J. Electronal. Chem. 66, 231 (1975).

    Google Scholar 

  30. L. E. Strong,J. Chem. Educ. 53, 585 (1976).

    Google Scholar 

  31. G. S. Kell,J. Chem. Eng. Data 20, 97 (1975).

    Google Scholar 

  32. J. R. Coe and T. B. Godfrey,J. Appl. Phys. 15, 625 (1944); A. Korosi and B. M. Fabuss,Anal. Chem. 40, 157 (1968).

    Google Scholar 

  33. C. G. Malmberg and A. A. Maryott,J Res. Nat. Bur. Stand. 56, 1 (1956).

    Google Scholar 

  34. B. B. Owen, R. C. miller, C. E. Milner, and H. L. Cogan,J. Phys. Chem. 65, 206 (1961).

    Google Scholar 

  35. F. W. Schwab and E. Wichers,J. Res. Nat. Bur. Stand. 34, 333 (1945).

    Google Scholar 

  36. R. A. Robinson and R. H. Stokes,Electrolyte Solutions, 2nd edn. (Butterworths, London, 1959), p. 39.

    Google Scholar 

  37. R. A. Robinson and R. H. Stokes,Electrolyte Solutions, 2nd edn. (Butterworths, London, 1959), pp. 97–99.

    Google Scholar 

  38. T. Matsui, H. C. Ko, and L. G. Hepler,Can. J. Chem. 52, 2906 (1974).

    Google Scholar 

  39. E. J. King,Acid-Base Equilibria (Pergamon Press, New York, 1965), p. 32.

    Google Scholar 

  40. E. C. W. Clarke and D. N. Glew,Trans. Faraday Soc. 62, 539 (1966); P. D. Bolton,J. Chem. Educ. 47, 638 (1970).

    Google Scholar 

  41. R. W. Ramette,J. Chem. Educ. 54, 280 (1977).

    Google Scholar 

  42. H. S. Harned and B. B. Owen,Physical Chemistry of Electrolytic Solutions, 3rd edn. (Reinhold, New York, 1958), p. 233.

    Google Scholar 

  43. A. S. Quist and W. L. Marshall,J. Phys. Chem. 69, 2984 (1965).

    Google Scholar 

  44. D. D. MacDonald and D. Owen,Can. J. Chem. 51, 2747 (1973).

    Google Scholar 

  45. R. L. Kay, inWater: A Comprehensive Treatise, Vol. 3, F. Franks, ed. (Plenum Press, New York, 1973), p. 192.

    Google Scholar 

  46. L. E. Strong and H. F. Halliwell,J. Chem. Educ. 47, 347 (1970).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strong, L.E., Kinney, T. & Fischer, P. Ionization of aqueous benzoic acid: Conductance and thermodynamics. J Solution Chem 8, 329–345 (1979). https://doi.org/10.1007/BF00646786

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00646786

Key words

Navigation