Skip to main content
Log in

Anonymity and specificity in the chemical communication signals of social insects

  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Summary

The chemical communication signals of social insects, like many other insect semiochemicals, are complex mixtures that exhibit considerable variation in molecular composition and in the relative proportions of components. We propose that this variation is often functional, identifying individuals and groups on a variety of organizational levels and making possible a variety of adaptive discriminatory behaviors. Signals may be characterized as anonymous which are uniform throughout a group or organizational level, identifying the signaller as a member of the group but not distinguishing it from other members. Specific signals vary, and identify the signaller as an individual or member of a particular subgroup. These terms are relative; a given semiochemical may be anonymous in one context and specific in another. Specificity may be derived from the biosynthetic ‘noise’ in an anonymous signal by a process of chemical ritualization. Mechanisms for recognizing both anonymous and specific signals depend on their predictability; recognition of predictable signals may be encoded in a closed developmental program, while those that are unpredictable must be learned. These categories may be usefully applied to a broad range of interactions among social insects, including sexual communication, community structure, and nestmate and kin recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Attygalle A, Morgan ED (1985) Ant trail pheromones. Adv Insect Physiol 18:1–30

    Google Scholar 

  • Barlin MR, Blum MS, Brand JM (1976) Species-specificity studies on the trail pheromone of the carpenter ant,Camponotus pennsylvanicus (Hymenoptera:Formicidae). J Georgia Ent Soc 11:162–164

    Google Scholar 

  • Barrows EM (1975a) Individually distinctive odors in an invertebrate. Behav Biol 15:57–64

    Google Scholar 

  • Barrows EM (1975b) Mating behavior in the halictine bees III. Copulating behavior and olfactory communication. Insectes Soc 22:307–322

    Google Scholar 

  • Bergström G, Löfquist J (1972) Similarities between the Dufour's gland secretions of the antsCamponotus ligniperda (Latr.) andCamponotus herculeanus (L.). Entomol Scand 3:225–238

    Google Scholar 

  • Bergström G, Löfquist J (1973) Chemical congruence of the complex odoriferous secretions from Dufour's gland in three species of ants of the genusFormica. J Insect Physiol 19:877–907

    Google Scholar 

  • Binger B (1973) Territorial flight of bumblebee males in coniferous forest on the northernmost part of the island of Öland. Zoon [Suppl] 1:15–22

    Google Scholar 

  • Bisby FA, Vaughan JG, Wright CA (eds) (1980) Chemosystematics: principles and practice. Academic Press, New York

    Google Scholar 

  • Blum MS (In press) The basis and evolutionary significance of recognitive olfactory acuity in insect societies. In: Pasteels JM, Deneubourg JL (eds) Collective organization in social insects. Birkhäuser, Basel

  • Blum MS, Moser JC, Cordero AD (1964) Chemical releasers of social behavior II. Source and specificity of the odor trail substances in four attine genera. Psyche 71:1–7

    Google Scholar 

  • Bradshaw JS, Baker R, Howse PE (1975) Multi-component alarm pheromone of the weaver ant. Nature 258:230–231

    Google Scholar 

  • Bradshaw JS, Baker R, Howse PE, Higgs MD (1979a) Caste and colony variations in the chemical composition of the cephalic secretions of the African weaver ant,Oecophylla longinoda. Physiol Entomol 4:27–38

    Google Scholar 

  • Bradshaw JS, Baker R, Howse PE (1979b) Multi-component alarm pheromones in the mandibular glands of major workers of the African weaver ant,Oecophylla longinoda. Physiol Entomol 4:15–25

    Google Scholar 

  • Breed M (1986) Multiple inputs in the nestmate discrimination system of the honey bee. In: Eder J, Rembold H (eds) Abstracts, 10th International Congress, I.U.S.S.I. J. Peperny, München

    Google Scholar 

  • Breed MD, Velthuis HHW, Robinson GE (1984) Do worker honey bees discriminate among unrelated and related larval phenotypes? Ann Ent Soc Amer 77:737–739

    Google Scholar 

  • Breed MD, Butler L, Stiller TM (1985) Kin discrimination by worker honey bees in genetically mixed groups. Proc Natl Acad Sci USA 82:3058–3061

    Google Scholar 

  • Brian MV (1986) Bonding between workers and queens in the ant genusMyrmica. Anim Behav 34:1135–1145

    Google Scholar 

  • Buckle G, Greenberg L (1981) Nestmate recognition in a sweat bee (Lasioglossum zephyrum): does an individual recognize its own odors, or only odors of its nestmates? Anim Behav 29:802–809

    Google Scholar 

  • Buren W, Naves M, Carlysle T (1977) False phragmosis and apparent specialization for subterranean warfare inPheidole lamia Wheeler (Hymenoptera:Formicidae). J Georgia Ent Soc 12:96–100

    Google Scholar 

  • Buschinger A (1968) ‘Locksterzeln’ begattungs-bereiter ergatoider Weibchen vonHarpagoxenus sublaevis Nyl. (Hymenoptera: Formicidae). Experientia 24:297

    Google Scholar 

  • Butler CG, Calam DH, Callow RK (1967) Attraction ofApis mellifera drones by the odours of the queen of two other species of honey bees. Nature 213:423–424

    Google Scholar 

  • Carde R, Carde M, Hill A, Roelofs W (1977) Sex pheromone specificity as a reproductive isolating mechanism among the sibling speciesArchips argyrospilus andA. mortuanus and other sympatric tortricine moths (Lepidoptera:Tortricidae). J Chem Ecol 3:71–84

    Google Scholar 

  • Carlin NF, Hölldobler B (1983) Nestmate and kin recognition in interspecific mixed colonies of ants. Science 222:1027–1029

    Google Scholar 

  • Carlin NF, Hölldobler B (1986) The kin recognition system of carpenter ants (Camponotus spp.) I: Hierarchical cues in small colonies. Behav Ecol Sociobiol 19:123–134

    Google Scholar 

  • Carlin NF, Hölldobler B (1987) The kin recognition system of carpenter ants (Camponotus spp.) II: Larger colonies. Behav Ecol Sociobiol 20:209–218

    Google Scholar 

  • Carlin NF, Johnston AB (1984) Learned enemy specification in the defense recruitment system of an ant. Naturwissenschaften 71:156–157

    Google Scholar 

  • Carlin NF, Hölldobler B, Gladstein DS (1987) The kin recognition system of carpenter ants (Camponotus spp.) III: Within — colony discrimination. Behav Ecol Sociobiol 20:219–227

    Google Scholar 

  • Chadab R (1979) Early warning cues for social wasps attacked by army ants. Psyche 86:115–123

    Google Scholar 

  • Clement JL, Bonavita-Cougourdan AC, Lange C (1986) Nestmate recognition and cuticular hydrocarbons inCamponotus vagus Scop. In: Eder J, Rembold H (eds) Abstracts, 10th International Congress, International Union for the Study of Social Insects. J. Peperny, München, p 154

    Google Scholar 

  • Cody ML (1969) Convergent characteristics in sympatric populations: a possible relation to interspecific territoriality. Condor 71:222–239

    Google Scholar 

  • Cole AC (1968)Pogonomyrmex harvester ants. University of Tennessee Press, Knoxville

    Google Scholar 

  • Crewe RM (1982) Compositional variability: the key to the social signals produced by honeybee mandibular glands. In: Breed M, Michener C, Evans H (eds) The biology of social insects. Westview Press, Boulder, CO, pp 318–322

    Google Scholar 

  • Crozier R (In press) Genetic aspects of kin recognition: Concepts, models and synthesis. In: Fletcher DJC, Michener CD (eds) Kin recognition in animals. John Wiley, New York

  • Crozier RH, Dix MW (1979) Analysis of two genetic models for the innate components of colony odor in social Hymenoptera. Behav Ecol Sociobiol 4:217–224

    Google Scholar 

  • Droual R (1983) The organization of nest evacuation inPheidole desertorum Wheeler andP. hyatti Emery (Hymenoptera: Formicidae). Behav Ecol Sociobiol 12:203–208

    Google Scholar 

  • Evers C, Seeley T (1986) Kin discrimination and aggression in honey bee colonies with laying workers. Anim Behav 34:924–925

    Google Scholar 

  • Feener D (1986) Alarm-recruitment behavior inPheidole militicida Wheeler (Hymenoptera: Formicidae). Ecol Entomol 11:67–74

    Google Scholar 

  • Fletcher DJC, Michener CD (eds) (In press) Kin recognition in animals. John Wiley and Sons, New York

  • Forel A (1874) Les fourmis de la Suisse. Societé Helvetique des Sciences Naturelles, Zürich

    Google Scholar 

  • Frumhoff PC, Schneider S (1987) The social consequences of honeybee polyandry: kinship influences worker interactions within colonies. Anim Behav 35:255–262

    Google Scholar 

  • Gadagkar R (1985) Kin recognition in social insects and other animals — a review of recent findings and a consideration of their relevance for the theory of kin selection. Proc Indian Acad Sci (Anim Sci) 94:587–621

    Google Scholar 

  • Gamboa G, Reeve H, Pfennig D (1986) The evolution and ontogeny of nestmate recognition in social wasps. Annu Rev Entomol 31:431–454

    Google Scholar 

  • Gascuel J, Pham-Delegue M, Arnold G, Masson C (1986) Evidence for a sensitive period during the development of the olfactory system in the honey bee: anatomical, functional and behavioral data. In: Eder J, Rembold H (eds) Abstracts, 10th International Congress, International Union for the Study of Social Insects. J. Peperny, München, p 35

    Google Scholar 

  • Getz WM (1981) Genetically based kin recognition systems. J Theor Biol 92:209–226

    Google Scholar 

  • Getz WM, Chapman RF (In press) An odor discrimination model with application to kin recognition in social insects. Intern J Neuroscience

  • Getz WM, Smith K (1986) Honey bee kin recognition: learning self and nestmate phenotypes. Anim Behav 34:1617–1626

    Google Scholar 

  • Getz WM, Brückner D, Parisian TR (1982) Kin structure and swarming behavior of the honey beeApis mellifera. Behav Ecol Sociobiol 10:265–270

    Google Scholar 

  • Getz WM, Brückner D, Smith KB (1986) Conditioning honeybees to discriminate between heritable odors from full and half sisters. J Comp Physiol A 159:251–256

    Google Scholar 

  • Greenberg L (1979) Genetic component of bee odor in kin recognition. Science 206:1095–1097

    Google Scholar 

  • Haas A (1949) Arttypische Flugbahnen von Hummelmännchen. Z Vergl Physiol 31:281–307

    Google Scholar 

  • Hamilton WD (1964) The genetical theory of social behavior. J Theor Biol 7:1–52

    Google Scholar 

  • Hangartner W (1967) Spezifität und Inaktivierung des Spurpheromons vonLasius fuliginosus Latr. und Orientierung der Arbeiterinnen im Duftfeld. Z Vergl Physiol 57:103–136

    Google Scholar 

  • Hefetz A, Bergström G, Tengö J (1986) Species, individual and kin specific blends in Dufour's gland secretions of halictine bees. J Chem Ecol 12:197–208

    Google Scholar 

  • Hepper PG (1986) Kin recognition: functions and mechanisms, a review. Biol Rev 61:63–93

    Google Scholar 

  • Hölldobler B (1976a) The behavioral ecology of mating in harvester ants (Hymenoptera: Formicidae:Pogonomyrmex). Behav Ecol Sociobiol 1:405–423

    Google Scholar 

  • Hölldobler B (1976b) Recruitment behavior, home range orientation and territoriality in harvester ants,Pogonomyrmex. Behav Ecol Sociobiol 1:33–44

    Google Scholar 

  • Hölldobler B (1979) Territories of the African weaver ant (Oecophylla longinoda [Latrielle]), a field study. Z Tierpsychol 51:201–213

    Google Scholar 

  • Hölldobler B (1982) Interference strategy ofIridomyrmex pruinosum (Hymenoptera:Formicidae) during foraging. Oecologia 25:208–213

    Google Scholar 

  • Hölldobler B (1983a) Chemical manipulation, enemy specification and intercolony communication in ant communities. In: Huber F, Markl H (eds) Neuroethology and behavioral physiology. Springer, Berlin Heidelberg New York, pp 354–365

    Google Scholar 

  • Hölldobler B (1983b) Territorial behavior in the green tree ant (Oecophylla smaragdina). Biotropica 15:241–250

    Google Scholar 

  • Hölldobler B (1984) Evolution of insect communication. In: Lewis T (ed) Insect communication. Academic Press, London, pp 349–377

    Google Scholar 

  • Hölldobler B (1986) Konkurrenzverhalten und Territorialität in Ameisepopulationen. In: Eisner T, Hölldobler B, Lindauer M (eds) Chemische Ökologie, Territorialität, gegenseitige Verständigung. Information Processing in Animals, vol 3. Gustav Fischer, New York, pp 25–70

    Google Scholar 

  • Hölldobler B, Bartz SH (1985) Sociobiology of reproduction in ants. In: Hölldobler B, Lindauer M (eds) Experimental behavioral ecology and sociobiology. Gustav Fischer, Stuttgart, pp 231–257

    Google Scholar 

  • Hölldobler B, Lumsden C (1980) Territorial strategies in ants. Science 210:732–739

    Google Scholar 

  • Hölldobler B, Michener CD (1980) Mechanisms of identification and discrimination in social Hymenoptera. In: Markl H (ed) Evolution of social behavior: hypotheses and empirical tests. Verlag Chemie GmbH, Weinheim, pp 35–58

    Google Scholar 

  • Hölldobler B, Wilson EO (1978) The multiple recruitment systems of the African weaver ant,Oecophylla longinoda (Latreille) (Hymenoptera: Formicidae). Behav Ecol Sociobiol 3:19–60

    Google Scholar 

  • Holmes WG, Sherman PW (1983) Kin recognition in animals. Am Sci 71:46–55

    Google Scholar 

  • Howard RW, Blomquist GJ (1982) Chemical ecology and biochemistry of insect hydrocarbons. Annu Rev Ent 27:149–172

    Google Scholar 

  • Howse PE, Lisk JC, Bradshaw JWS (1986) The role of pheromones in the control of behavioural sequences in insects. In: Payne T, Birch M, Kennedy C (eds) Mechanisms in insect olfaction. Clarendon Press, Oxford, pp 157–162

    Google Scholar 

  • Jaisson P (1985) Social behavior. In: Kerkut G, Gilbert L (eds) Comprehensive insect physiology, biochemistry and pharmacology. Pergamon Press, Elmsford, NY, pp 673–694

    Google Scholar 

  • Jessen K, Maschwitz U (1985) Individual specific trails in the antPachycondyla tesserinoda (Formicidae:Ponerinae). Naturwissenschaften 72:549–550

    Google Scholar 

  • Jessen K, Maschwitz U (1986) Orientation and recruitment behavior in the ponerine antPachycondyla tesserinoda (Emery): Laying of individual-specific trails during tandem running. Behav Ecol Sociobiol 19:151–155

    Google Scholar 

  • Jewett DM, Matsumura F, Coppel HC (1976) Sex pheromone specificity in the pine sawflies: interchange of acid moities in an ester. Science 192:51–53

    Google Scholar 

  • Jutsum AR, Saunders TS, Cherrett JM (1979) Intraspecific aggression in the leaf-cutting antAcromyrmex octospinosus. Anim Behav 27:839–844

    Google Scholar 

  • Karlson P, Lüscher M (1959) ‘Pheromones’, a new term for a class of biologically active substances. Nature 183:155–176

    Google Scholar 

  • Koeniger N, Wijayagunasekera HNP (1976) Time of drone flight in the three Asiatic honeybee species. J Apic Res 15:67–71

    Google Scholar 

  • Kullenberg B, Bergström G, Binger B, Carlberg B, Cederberg B (1973) Observations on scent marking byBombus Latr. andPsithyrus Lep. males (Hym. Apidae) and localization of site of production of the secretion. Zoon [Suppl] 1:23–30

    Google Scholar 

  • La Mon B, Topoff H (1981) Avoiding predation by army ants: defensive behavior of three ant species of the genusCamponotus. Anim Behav 29:1070–1081

    Google Scholar 

  • Lanier G, Claesson A, Stewart T, Piston J, Silverstein R (1980)Ips pini: the basis for interpopulational differences in pheromone biology. J Chem Ecol 6:667–687

    Google Scholar 

  • Larch CM, Gamboa GJ (1981) Investigation of mating preferences for nestmates in the paper waspPolistes fuscatus (Hymenoptera: Vespidae). J Kans Ent Soc 54:811–814

    Google Scholar 

  • Law JH, Regnier F (1971) Pheromones. Annu Rev Biochem 40:533–548

    Google Scholar 

  • Levings SC, Traniello JFA (1981) Territoriality, nest dispersion and community structure in ants. Psyche 88:265–320

    Google Scholar 

  • Markl H (1983) Vibrational communication. In: Huber F, Markl H (eds) Neuroethology and behavioral physiology. Springer, Berlin Heidelberg New York, pp 332–354

    Google Scholar 

  • Markl H (1985) Manipulation, modulation, information, cognition: some of the riddles of communication. In: Hölldobler B, Lindauer M (eds) Experimental behavioral ecology and sociobiology. Gustav Fischer, Stuttgart, pp 163–194

    Google Scholar 

  • Maschwitz U, Lenz A, Buschinger A (1986) Individual specific trails in the antLeptothorax affinis (Formicidae: Myrmicinae). Experientia 42:1173–1174

    Google Scholar 

  • Masson C, Arnold G (1984) Ontogeny, maturation and plasticity of the olfactory system in the worker bee. J Insect Physiol 30:7–14

    Google Scholar 

  • Mayr E (1974) Behavior programs and evolutionary strategies. Am Scientist 62:650–659

    Google Scholar 

  • Michener CD (1982) Early stages in insect social evolution: Individual and family odor differences and their functions. Bull Ent Soc Amer 28:7–11

    Google Scholar 

  • Mintzer A (1982) Copulatory behavior and mate selection in the harvester ant,Pogonomyrmex californicus. Ann Ent Soc Am 75:323–326

    Google Scholar 

  • Mintzer A, Vinson SB (1985) Kinship and incompatibility between colonies of the acacia antPseudomyrmex ferruginea. Behav Ecol Sociobiol 17:75–78

    Google Scholar 

  • Möglich M, Alpert G (1979) Stone-dropping byConomyrma bicolor (Hymenoptera: Formicidae): a new technique of interference competition. Behav Ecol Sociobiol 6:105–113

    Google Scholar 

  • Morel L, Vander Meer R (1986) Nestmate recognition inCamponotus floridanus: Behavioral and chemical evidence for the role of age and social experience. In: Eder J, Rembold H (eds) Abstracts, 10th International Congress, International Union for the Study of Social Insects. J. Peperny, München, pp 153–154

    Google Scholar 

  • Morgan ED (1984) Chemical words and phrases in the language of pheromones for foraging and recruitment. In: Lewis T (ed) Insect communication. Academic Press, New York, pp 169–194

    Google Scholar 

  • Noonan KC (1986) Recognition of queen larvae by worker honey bees (Apis mellifera). Ethology 73:295–306

    Google Scholar 

  • Norlund DA (1981) Semiochemicals: a review of the terminology. In: Norlund DA, Jones RL, Lewis WJ (eds) Semiochemicals. John Wiley, New York, pp 13–27

    Google Scholar 

  • Obin M (1986) Nestmate recognition cues in laboratory and field colonies ofSolenopsis invicta Buren (Hymenoptera: Formicidae): effect of environment and the role of cuticular hydrocarbons. J Chem Ecol 12:1965–1975

    Google Scholar 

  • O'Connell RJ (1975) Olfactory receptor responses to sex pheromone components of the red-banded leafroller moth. J Gen Physiol 65:179–205

    Google Scholar 

  • Page RE, Erickson E (1984) Selective rearing of queens by worker honey bees: kin or nestmate recognition. Ann Ent Soc Am 77:578–580

    Google Scholar 

  • Payne TL, Birch MC, Kennedy CEJ (eds) (1986) Mechanisms in insect olfaction. Clarendon Press, Oxford

    Google Scholar 

  • Phelan PL, Baker TC (1987) Evolution of male pheromones in moths: reproductive isolation through sexual selection. Science 235:205–207

    Google Scholar 

  • Philips SA, Jones SR, Claborn DM (1986) Temporal foraging patterns ofSolenopsis invicta and native ants of central Texas. In: Lofgren C, Vander Meer RK (eds) Fire ants and leaf-cutting ants: biology and management. Westview Press, Boulder, CO, pp 114–122

    Google Scholar 

  • Post DC, Jeanne RL (1982) Recognition of former nestmates during colony founding by the social waspPolistes fuscatus (Hymenoptera:Vespidae). Behav Ecol Sociobiol 11: 283–285

    Google Scholar 

  • Post DC, Jeanne RL (1983) Relatedness and mate selection inPolistes fuscatus (Hymenoptera:Vespidae). Anim Behav 31:1260–1261

    Google Scholar 

  • Provost E (1986) Role of the queen in the intra-colonial aggressivity and the nestmate recognition inLeptothorax lichtensteini ants. In: Eder J, Rembold H (eds) Abstracts, 10th International Congress, I.U.S.S.I. J. Peperny, München, p 159

    Google Scholar 

  • Regnier F, Nieh M, Hölldobler B (1983) The volatile Dufour's gland components of the harvester antsPogonomyrmex rugosus andP. barbatus. J Insect Physiol 19:981–992

    Google Scholar 

  • Ross K (1983) Laboratory studies of the mating biology of the eastern yellowjacket,Vespula maculifrons (Hymenoptera: Vespidae). J Kans Ent Soc 56:523–537

    Google Scholar 

  • Ruttner F, Kaissling KE (1968) Über die interspezifische Wirkung des Sexuallockstoffes vonApis mellifica undApis cerana. Z Vergl Physiol 59:362–370

    Google Scholar 

  • Ryan R, Gamboa G (1986) Nestmate recognition between males and gynes of the social waspPolistes fuscatus (Hymenoptera:Vespidae). Ann Ent Soc Amer 79:572–575

    Google Scholar 

  • Schneider D (1957) Elektrophysiologische Untersuchungen von Chemo- und Mechanorezeptoren der Antenne des SeidenspinnersBombyx mori L. Z Vergl Physiol 40:8–41

    Google Scholar 

  • Schneider D (1969) Insect olfaction: deciphering system for chemical messages. Science 163:1031–1037

    Google Scholar 

  • Schneider D, Lacher V, Kaissling KE (1964) Die Reaktionsweise und das Reaktionsspektrum von Riechzellen beiAntheraea pernyi (Lepidoptera:Saturniidae). Z Vergl Physiol 48:632–662

    Google Scholar 

  • Shorey HH (1976) Animal communication by pheromones. Academic Press, New York

    Google Scholar 

  • Silverstein RM, Young JC (1976) Insects generally use multicomponent pheromones. In: Gould RF (ed) Pest management with insect sex attractants. Am Chem Soc, Washington DC, pp 1–29

    Google Scholar 

  • Smith B (1983) Recognition of female kin by male bees through olfactory signals. Proc Natl Acad Sci USA 80:4551–4553

    Google Scholar 

  • Stuart RJ (1986) Individually-produced nestmate recognition cues contribute to a colony odour ‘gestalt’ in leptothoracine ants. In: Eder J, Rembold H (eds) Abstracts, 10th International Congress, I.U.S.S.I. J. Peperny, München, p 160

    Google Scholar 

  • Stuart RJ (1987) Individual workers produce colony-specific nestmate recognition cues in the ant,Leptothorax curvispinosus. Anim Behav 35:1062–1067

    Google Scholar 

  • Stuart RJ (1987) Transient nestmate recognition cues contribute to a multicolonial population structure in the ant,Leptothorax curvispinosus. Behav Ecol Sociobiol (in press)

  • Svensson BG, Bergström G (1977) Volatile marking secretions from the labial gland of North EuropeanPyrobombus D.T. males (Hymenoptera, Apidae). Insectes Soc 24:213–224

    Google Scholar 

  • Texas Instruments (1985) The TI Scheme Reference Manual. Texas Instruments, Austin, Tex.

  • Topoff H (1987) Ant wars. Nat Hist 96:62–71

    Google Scholar 

  • Torgerson R, Akre R (1970) The persistence of army ant chemical trails and their significance in the ecitonine-ecitophile association (Formicidae:Ecitonini). Melanderia 5:1–28

    Google Scholar 

  • Traniello JFA (1980) Colony specificity in the trail pheromones of an ant. Naturwissenschaften 67:361

    Google Scholar 

  • Traniello JFA, Beshers SN (1985) Species-specific alarm/recruitment responses in a neotropical termite. Naturwissenschaften 72:491–492

    Google Scholar 

  • Vander Meer RK (1986a) Chemical taxonomy as a tool for separatingSolenopsis spp. In: Lofgren C, Vander Meer RK (eds) Fire ants and leaf-cutting ants: biology and management. Westview Press, Boulder, CO, pp 316–326

    Google Scholar 

  • Vander Meer RK (1986b) The trail pheromone complex ofSolenopsis invicta andS. richteri. In: Lofgren C, Vander Meer RK (eds) Fire ants and leaf-cutting ants: biology and management. Westview Press, Boulder, CO, pp 201–210

    Google Scholar 

  • van Honk CGJ, Velthuis HHW, Röseler PF (1978) A sex pheromone from the mandibular glands in bumblebee queens. Experientia 34:838–839

    Google Scholar 

  • Visscher PK (1986) Kinship discrimination in queen rearing by honeybees (Apis mellifera). Behav Ecol Sociobiol 18:453–460

    Google Scholar 

  • Wesson LG (1939) Contribution to the natural history ofHarpagoxenus americanus (Hymenoptera, Formicidae). Trans Am Ent Soc 65:97–121

    Google Scholar 

  • West-Eberhard MJ (1975) The evolution of social behavior by kin selection. Q Rev Biol 50:1–32

    Google Scholar 

  • West-Eberhard MJ (1983) Sexual selection, social competition and speciation. Q Rev Biol 58:155–183

    Google Scholar 

  • West-Eberhard MJ (1984) Sexual selection, competitive communication and species-specific signals in insects. In: Lewis T (ed) Insect communication. Academic Press, New York, pp 283–324

    Google Scholar 

  • Wilson EO (1962) Chemical communication among workers of the fire antSolenopsis saevissima (Fr. Smith). Anim Behav 10:134–164

    Google Scholar 

  • Wilson EO (1965) Trail sharing in ants. Psyche 72:2–7

    Google Scholar 

  • Wilson EO (1970) Chemical communication within animal species. In: Sondheimer E, Simeone JB (eds) Chemical ecology. Academic Press, New York, pp 133–155

    Google Scholar 

  • Wilson EO (1975) Enemy specification in the alarm-recruitment system of an ant. Science 190:798–800

    Google Scholar 

  • Wilson EO (1976) The organization of colony defense in the antPheidole dentata Mayr (Hymenoptera: Formicidae). Behav Ecol Sociobiol 1:63–81

    Google Scholar 

  • Winston P (1984) Artificial intelligence. Addison-Wesley, Reading, Mass.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hölldobler, B., Carlin, N.F. Anonymity and specificity in the chemical communication signals of social insects. J. Comp. Physiol. 161, 567–581 (1987). https://doi.org/10.1007/BF00603662

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00603662

Keywords

Navigation