Skip to main content
Log in

Two modes of Na extrusion in cells from guinea pig kidney cortex slices

  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Summary

Cells from guinea pig kidney cortex slices, which have been loaded with Na and caused to lose K, by leaching at 0.6° C for 2.5 hours, extrude Na with Cl upon rewarming to 25° C in a medium without K. A subsequent rise in the K concentration in the bath at 25° C induces further net Na extrusion, 1 Na being extruded in exchange for 1 K that is taken up. When the leached tissue is rewarmed to 25°C in the presence of K in the bathing fluid (2 or 16 mM), some Na is extruded accompanied with Cl (by a mechanism that is inhibited by ethacrynic acid) and some Na is extruded maintanining a 1:1 ratio with the K that is taken up, (this system being inhibited by ouabain). Thus two modes of Na extrusion are observed, mode A that is accompanied by net Cl efflux, and that is inhibited by 2 mM ethacrynic acid, but not by 1 or 10 mM ouabain and mode B in which one K is taken up for each Na extruded. Mode B is inhibited by 1 mM ouabain and not by ethacrynic acid. DNP and anoxia inhibit both modes A and B. Insufficient doses of ouabain do not explain the refractoriness of mode A to ouabain. Ouabain and ethacrynic acid are known inhibitors of the Na−K-ATPase at much lower doses. It is concluded that both modes may originate in different Na pumps which may have different energy sources. Pump A should be efficient in the volume regulation of the cell. According to experimental procedure, both modes of Na extrusion appear of comparable magnitude. In the steady-state their relative role may be different.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bittar, E. E.: Effects of inhibitors and uncouplers on the Na pump of the Maia muscle fibre. J. Physiol. (Lond.)187, 81 (1966).

    Google Scholar 

  2. —, Dick, D. A. T., Fry, D. J.: The action of ethacrynic acid on sodium efflux from single toad oocytes. J. Physiol. (Lond.)196, 693 (1968).

    Google Scholar 

  3. Blond, D. M., Whittam, R.: The regulation of kidney respiration by sodium and potassium ions. Biochem. J.92, 158 (1964).

    Google Scholar 

  4. Burg, M. B., Grollman, E. F., Orloff, J.: Na and K flux of separated renal tubules. Amer. J. Physiol.206, 483 (1964).

    Google Scholar 

  5. —, Orloff, J.: Effect of strophanthidin on electrolyte content and PAH accumulation of rabbit kidney slices. Amer. J. Physiol.202, 565 (1962).

    Google Scholar 

  6. ——: Effect of strophanthidin of fluxes of K in rabbit kidney slices. Amer. J. Physiol.205, 139 (1963).

    Google Scholar 

  7. ——: Active cation transport by kidney tubules at 0° C. Amer. J. Physiol.207, 983 (1964).

    Google Scholar 

  8. Cross, S. B., Keynes, R. D., Rybova, R.: The coupling of Na efflux in frog muscle. J. Physiol. (Lond.)181, 865 (1965).

    Google Scholar 

  9. Daniel, E. E.: The effects of new diuretics on net ion movement in Na-rich smooth muscle. Canad. J. Physiol. Pharmacol.45, 149 (1967).

    Google Scholar 

  10. Duggan, D. E., Noll, R. M.: Effects of ethacrynic acid and cardiac glycosides upon membrane Adenosine Triphosphatase of renal cortex. Arch. Biochem.109, 388 (1965).

    Google Scholar 

  11. Fuhrman, F. A., Field, J.: Influence of temperature on the stimulation of oxygen consumption of isolated brain and kidney by 2–4 dinitrophenol. J. pharmacol. exp. Ther.75, 58 (1942).

    Google Scholar 

  12. Gaudemer, Y., Foucher, B.: Influence de l'ethacrynate de Na sur quelques réactions liees an mecanisme des oxydations phosphorylantes. Biochim. biophys. Acta (Amst.)131, 255 (1967).

    Google Scholar 

  13. Giebisch, G.: Measurements of electrical potentials and ion fluxes on single renal tubules. Circulation21, 879 (1960).

    Google Scholar 

  14. —: Measurements of electrical potential differences on single nephrons of the perfused Necturus kidney. J. gen. Physiol.44, 659 (1961).

    Google Scholar 

  15. Glynn, I. M.: The action of cardiac glycosides on sodium and potassium movements in human red cells. J. Physiol. (Lond.)136, 148 (1957).

    Google Scholar 

  16. Gordon, E. E.: Site of ethacrynic acid action on Ehrich ascites tumor cells. Biochem. Pharmacol.17, 1237 (1968).

    Google Scholar 

  17. Greven, K.: Der O2-Diffusionskoeffizient von Leber, Nierenrinde und Hirnrinde unter verschiedenen Bedingungen. Pflügers Arch. ges. Physiol.271, 14 (1960).

    Google Scholar 

  18. Hoffman, J. F.: The red cell membrane and the transport of Na for K. Amer. J. Med.41, 666 (1966).

    Google Scholar 

  19. —, Kregenow, F. M.: The characterization of new energy dependent cation transport processes in red blood cells. Ann. N. Y. Acad. Sci.137, 566 (1966).

    Google Scholar 

  20. Jacobs, M. H.: Diffusion processes Ergebn. Biol.12, 1 (1935).

    Google Scholar 

  21. Kessler, R. H., Landwehr, D., Quintanilla, A., Weseley, S. A., Kaufmann, W., Arcila, H., Urbaitis, B. K.: Effects of certain inhibitors of renal Na reabsorption and ATP specific activity. Nephron5, 474 (1968).

    Google Scholar 

  22. Kleinzeller, A.: The role of potassium and calcium in the regulation of metabolism in kidney cortex slices. In: Membrane Transport and Metabolism, p. 527. Hrsg. von A. Kleinzeller u. A. Kotyk. New York: Academic Press Inc. 1961.

    Google Scholar 

  23. —, Knotkova, A.: The effect of ouabain on the electrolyte and water transport in kidney cortex and liver slices. J. Physiol. (Lond.)175, 172 (1964).

    Google Scholar 

  24. ——: Evaluation of the extracellular space of tissue slices from steady state kinetics. Biochim. biophys. Acta (Amst.)126, 604 (1966).

    Google Scholar 

  25. ——: The steady state efflux of Na, K, and Cl from kidney cortex slices. Physiol. Bohemoslov.16, 214 (1967).

    Google Scholar 

  26. Leaf, A.: On the mechanism of fluid exchange of tissues in vitro. Biochem. J.62, 241 (1956).

    Google Scholar 

  27. Leblanc, G., Erlij, D.: Effects of ethacrynic acid on Na fluxes in frog sartorius muscle. Biochim. biophys. Acta (Amst.)173, 149 (1969).

    Google Scholar 

  28. Macknight, A. D. C.: Water and electrolyte contents of rat renal cortical slices incubated in potassium-free media and media containing ouabain. Biochim. biophys. Acta (Amst.)150, 263 (1968).

    Google Scholar 

  29. —: The extracellular space in rat renal cortical slices incubated at 0.5° C and 25° C. Biochim. biophys. Acta (Amst.)163, 85 (1968).

    Google Scholar 

  30. —: Water and electrolyte contents of rat renal cortical slices incubated in medium containing p-chloromercuribenzoic acid or p-chloromercuribenzoic acid and ouabain. Biochim. biophys. Acta (Amst.)163, 500 (1968).

    Google Scholar 

  31. —: Regulation of cellular volume during anaerobic incubation of rat renal cortical slices. Biochim. biophys. Acta (Amst.)163, 557 (1968).

    Google Scholar 

  32. —: The effects of ethacrynic acid on the electrolyte and water contents of rat renal cortical slices. Biochim. biophys. Acta (Amst.)173, 223 (1969).

    Google Scholar 

  33. Maude, D. L.: Stopped flow microperfusion of proximal tubules in rat kidney cortex slices. Amer. J. Physiol.214, 1315 (1968).

    Google Scholar 

  34. Mudge, G. H.: Studies on potassium accumulation by rabbit kidney slices: Effect of metabolic activity. Amer. J. Physiol.165, 113 (1951).

    Google Scholar 

  35. —: Electrolyte and water metabolism of rabbit kidney slices: Effect of metabolic inhibitors. Amer. J. Physiol.167, 206 (1951).

    Google Scholar 

  36. Orloff, J., Burg, M. B.: Effect of strophanthidin on electrolyte excretion in the chicken. Amer. J. Physiol.199, 49 (1960).

    Google Scholar 

  37. Robinson, J. R.: Osmoregulation in surviving slices from the kidneys of adult rats. Proc. roy. Soc. B137, 378 (1950).

    Google Scholar 

  38. Robinson, J. W. L.: Beziehung zwischen der Herzglykosid-Empfindlichkeit des Aminosäuretransportes und der Na+-K+-stimulierten ATPase im Rattendünndarm. Naunyn-Schmiedebergs Arch. Pharmak. exp. Path.260, 192 (1968).

    Google Scholar 

  39. Rosenberg, L. E., Downing, S. J., Segal, S.: Extracellular space estimation in rat kidney slices using C14 saccharides and phlorizin. Amer. J. Physiol.202, 800 (1962).

    Google Scholar 

  40. Siegman, M. J., Kao, C. Y.: Energy sources for Na and K movements in uterine smooth muscles. Fed. Proc.25, 632 (1966).

    Google Scholar 

  41. Solomon, A. K.: Compartmental methods of kinetic analysis. In: Mineral metabolism, p. 119. Hrsg. von C. L. Comar u. F. Bronner. New York: Academic Press 1960.

    Google Scholar 

  42. Tosteson, D. C., Hoffman, J. F.: Regulation of cell volume by active cation transport in high and low K sheep red cells. J. gen. Physiol.44, 169 (1960).

    Google Scholar 

  43. Ussing, H. H.: The alkali metal ions in isolated systems and tissues. In the Alkali Metal Ions in Biology. Hrsg. von H. H. Ussing, P. Kruhøoffer, J. Hess-Thaysen u. N. A. Thorn. Berlin-Göttingen-Heidelberg: Springer (1960).

    Google Scholar 

  44. Villegas, J.: Transport of electrolyte in the Schwann cell and location of Na by electron microscopy. J. gen. Physiol.51, 61 s (1968).

    Google Scholar 

  45. Villegas, R., Villegas, G. M.: Characterization of the membrane in the giant fiber of the squid. J. gen. Physiol.43, (5. Suppl.) 73 (1960).

    Google Scholar 

  46. Whittam, R.: The permeability of kidney cortex to chloride. J. Physiol. (Lond.)131, 542 (1956).

    Google Scholar 

  47. —, Davies, R. E.: Active transport of water, sodium, potassium, and α-oxoglutarate by kidney-cortex slices. Biochem. J.55, 880 (1953).

    Google Scholar 

  48. ——: Relation between metabolism and the rate of turnover of sodium and potassium in guinea pig kidney cortex slices. Biochem. J.56, 445 (1954).

    Google Scholar 

  49. —, Willis, J. S.: Ion movements and oxygen consumption in kidney cortex slices. J. Physiol. (Lond.)168, 158 (1963).

    Google Scholar 

  50. Whittembury, G.: Ion and water transport in the proximal tubules of the kidney ofNecturus maculosus. J. gen. Physiol.43, 5, (Suppl.) 43 (1960).

    Google Scholar 

  51. —: Sodium extrusion and potassium uptake in guinea pig kidney cortex slices. J. gen. Physiol.48, 699 (1965).

    Google Scholar 

  52. —: Movimiento de sodio y potasio en células renales. Acta cient. venez.16, 140 (1965).

    Google Scholar 

  53. Whittembury, G.: Sodium extrusion and sodium for potassium exchange in kidney cortex cells. Abstracts of the Second International Biophysics Congress, Vienna, Austria, p. 309 (1966).

  54. Whittembury, G.: Sodium and water transport in kidney proximal tubular cells. J. gen. Physiol.51, 303s (1968).

  55. —, Fishman, J.: Relation between cell Na extrusion and transtubular absorption in the perfused toad kidney: The effect of K, Ouabain and Ethacrynic acid. Pflügers Arch.307, 138 (1969).

    Google Scholar 

  56. —, Sugino, N., Solomon, A. K.: Ionic permeability and electrical potential differences in Necturus kidney cells. J. gen. Physiol.44, 689 (1961).

    Google Scholar 

  57. Willis, J. S.: Characteristic of ion transport in kidney cortex of mammalian hibernators. J. gen. Physiol.49, 1221 (1966).

    Google Scholar 

  58. —: The interaction of K, ouabain, and Na on the cation transpørt and respiration of renal cortical cells of Hamsters and ground squirrels. Biochim. biophys. Acta (Amst.)163, 516 (1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Whittembury, G., Proverbio, F. Two modes of Na extrusion in cells from guinea pig kidney cortex slices. Pflugers Arch. 316, 1–25 (1970). https://doi.org/10.1007/BF00587893

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00587893

Key-Words

Schlüsselwörter

Navigation