Skip to main content
Log in

The RAS-adenylate cyclase pathway and cell cycle control inSaccharomyces cerevisiae

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

The cell cycle ofSaccharomyces cerevisiae contains a decision point in G1 called ‘start’, which is composed of two specific sites. Nutrient-starved cells arrest at the first site while pheromone-treated cells arrest at the second site. Functioning of the RAS-adenylate cyclase pathway is required for progression over the nutrient-starvation site while overactivation of the pathway renders the cells unable to arrest at this site. However, progression of cycling cells over the nutrient-starvation site does not appear to be triggered by the RAS-adenylate cyclase pathway in response to a specific stimulus, such as an exogenous nutrient. The essential function of the pathway appears to be limited to provision of a basal level of cAMP. cAMP-dependent protein kinase rather than cAMP might be the universal integrator of nutrient availability in yeast. On the other hand stimulation of the pathway in glucose-derepressed yeast cells by rapidly-fermented sugars, such as glucose, is well documented and might play a role in the control of the transition from gluconeogenic growth to fermentative growth. The initial trigger of this signalling pathway is proposed to reside in a ‘glucose sensing complex’ which has both a function in controlling the influx of glucose into the cell and in activating in addition to the RAS-adenylate cyclase pathway all other glucose-induced regulatory pathways in yeast. Two crucial problems remaining to be solved with respect to cell cycle control are the nature of the connection between the RAS-adenylate cyclase pathway and nitrogen-source induced progression over the nutrient-starvation site of ‘start’ and second the nature of the downstream processes linking the RAS-adenylate cyclase pathway to Cyclin/CDC28 controlled progression over the pheromone site of ‘start’.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

cAMP-PK:

cAMP-dependent protein kinase

References

  • Alonso A, Pascual C, Herrera L, Gancedo JM & Gancedo C (1984) Metabolic imbalance in aSaccharomyces cerevisiae mutant unable to grow on fermentable hexoses. Eur. J. Biochem. 138: 407–411

    Google Scholar 

  • Argüelles JC, Mbonyi K, Van Aelst L, Vanhalewyn M, Jans AWH & Thevelein JM (1990) Absence of glucose-induced cAMP signaling in theSaccharomyces cerevisiae mutantscat1 andcat3 which are deficient in derepression of glucose-repressible proteins. Arch. Microbiol. 154: 199–205

    Google Scholar 

  • Arkinstall SJ, Papasavvas SG, & Payton MA (1991) Yeast α-mating factor receptor-linked G-protein signal transduction suppresses RAS-dependent activity. FEBS Lett. 284: 123–128

    Google Scholar 

  • Banuelos M & Fraenkel DG (1982)Saccharomyces carlsbergensis fdp mutant and futile cycling of fructose-6-phosphate. Mol. Cell. Biol. 2: 921–929

    Google Scholar 

  • Barbacid M (1987)ras Genes. Ann. Rev. Biochem. 56: 779–827

    Google Scholar 

  • Baroni MD, Martegani E, Monti P & Alberghina L (1989) Cell size modulation byCDC25 andRAS2 genes inSaccharomyces cerevisiae. Mol. Cell. Biol. 9: 2715–2723

    Google Scholar 

  • Bataille N, Regnacq M & Boucherie H (1991) Induction of a heat-shock-type response inSaccharomyces cerevisiae following glucose limitation. Yeast 7: 367–378

    Google Scholar 

  • Becher dos Passos J, Vanhalewyn M, Brandao RL, Castro IM, Nicoli JR & Thevelein JM (1992) Glucose-induced activation of plasma membrane H+-ATPase in mutants of the yeastSaccharomyces cerevisiae affected in cAMP metabolism, cAMP-dependent protein phosphorylation and the initiation of glycolysis. Biochim. Biophys. Acta. (in press)

  • Bedard DP, Johnston GC & Singer RA (1981) New mutations in the yeastSaccharomyces cerevisiae affecting completion of ‘start’. Curr. Genet. 4: 205–214

    Google Scholar 

  • Belazzi T, Wagner A, Wieser R, Schanz M, Adam G, Hartig A & Ruis H (1991) Negative regulation of transcription of theSaccharomyces cerevisiae catalase T (CTT1) gene by cAMP is mediated by a positive control element. EMBO J. 10: 585–592

    Google Scholar 

  • Beullens M & Thevelein JM (1990) Investigation of transport-associated phosphorylation of sugar in yeast mutants (snf3) lacking high-affinity glucose transport and in a mutant (fdp1) showing deficient regulation of initial sugar metabolism. Curr. Microbiol. 21: 39–46

    Google Scholar 

  • Beullens M, Mbonyi K, Geerts L, Gladines D., Detremerie K, Jans AWH & Thevelein JM (1988) Studies on the mechanism of the glucose-induced cAMP-signal in glucolysis-and glucose repression-mutants of the yeastSaccharomyces cerevisiae. Eur. J. Biochem. 172: 227–231

    Google Scholar 

  • Bissinger PH, Wieser R, Hamilton B & Ruis H (1989) Control ofSaccharomyces cerevisiae catalase T gene (CTT1) expression by nutrient supply via theras-cyclic AMP pathway. Mol. Cell. Biol. 9: 1309–1315

    Google Scholar 

  • Boutelet F, Petitjean A & Hilger F (1985) Yeastcdc35 mutants are defective in adenylate cyclase and are allelic withcyr1 mutants whileCAS1, a new gene, is involved in the regulation of adenylate cyclase. EMBO J 4: 2635–2641

    Google Scholar 

  • Boy-Marcotte E, Garreau H & Jacquet M (1987) Cyclic AMP controls the switch between division cycle and resting state programs in response to ammonium availability inSaccharomyces cerevisiae. Yeast 3: 85–93

    Google Scholar 

  • Breitenbach-Schmitt I, Schmitt HD, Heinisch J & Zimmermann FK (1984) Genetic and physiological evidence for the existence of a second glycolytic pathway in yeast parallel to the phosphofructokinase-aldolase reaction sequence. Mol. Gen. Genet. 195: 536–540

    Google Scholar 

  • Brenner C, Nakayama N, Goebl M, Tanaka K, Toh-E A & Matsumoto K (1988)CDC33 encodes mRNA Cap-binding protein eIF-4E ofSaccharomyces cerevisiae. Mol. Cell. Biol. 8: 3556–3559

    Google Scholar 

  • Breviario D, Hinnebusch A, Cannon J, Tatchell K & Dhar R (1986) Carbon source regulation ofRAS1 expression inSaccharomyces cerevisiae and the phenotypes of ras2 cells. Proc. Natl. Acad. Sci. USA 83: 4152–4156

    Google Scholar 

  • Broach JR (1991) RAS genes inSaccharomyces cerevisiae: signal transduction in search of a pathway. Trends Genet. 7: 28–33

    Google Scholar 

  • Broek D, Samiy N, Fasano O, Fujiyama A, Tamanoi T, Northup J & Wigler M (1985) Differential activation of yeast adenylate cyclase by wild-type and mutant RAS proteins. Cell 41: 763–769

    Google Scholar 

  • Broek D, Toda T, Michaeli T, Levin L, Birchmeier C, Zoller M, Powers S & Wigler M (1987) TheS. cerevisiae CDC25 gene product regulates the RAS/adenylate cyclase pathway. Cell 48: 789–799

    Google Scholar 

  • Cameron S, Levin L, Zoller M & Wigler M (1988) cAMP-independent control of sporulation, glycogen metabolism, and heat shock resistance inS. cerevisiae. Cell 53: 555–566

    Google Scholar 

  • Camonis JH, Kalékine M, Gondré B, Garreau H, Boy-Marcotte E & Jacquet M (1986) Characterization, cloning and sequence analysis of theCDC25 gene which controls the cyclic AMP level ofSaccharomyces cerevisiae. EMBO J. 5: 375–380

    Google Scholar 

  • Cannon JF, Gitan R & Tatchell K (1990) Yeast cAMP-dependent protein kinase regulatory subunit mutations display a variety of phenotypes. J. Biol. Chem. 265: 11897–11904

    Google Scholar 

  • Carter BLA & Jagadish MN (1978) The relationship between cell size and cell division in the yeastSaccharomyces cerevisiae. Exp. Cell Res. 112: 15–24

    Google Scholar 

  • Casperson GF, Walker N, Brasier AR & Bourne HR (1983) A guanine nucleotide-sensitive adenylate cyclase in the yeastSaccharomyces cerevisiae. J. Biol. Chem. 258: 7911–7914.

    Google Scholar 

  • Charlab R, Oliveira DE & Panek A (1985) Investigation of the relationship betweensst1 andfdp mutations in yeast and their effect on trehalose synthesis. Brazilian J. Med. Biol. Res. 18: 447–454

    Google Scholar 

  • Chatton B, Winsor B, Boulanger Y & Fasiolo F (1987) Cloning and characterization of the yeast methionyl-tRNA synthetase mutationmes1. J. Biol. Chem. 262: 15094–15097

    Google Scholar 

  • Chatton B, Walter P, Ebel J-P, Lacroute F & Fasiolo F (1988) The yeastVAS1 gene encodes both mitochondrial and cytoplasmic valyl-tRNA synthetases. J. Biol. Chem. 263: 52–57

    Google Scholar 

  • Cherry JR, Johnson TR, Dollard C, Sushter JR & Denis CL (1989) Cyclic AMP-dependent protein kinase phosphorylates and inactivates the yeast transcriptional activator ADR1. Cell 56: 409–419

    Google Scholar 

  • Coote PJ, Cole MB & Jones MV (1991) Induction of increased thermotolerance inSaccharomyces cerevisiae may be triggered by a mechanism involving intracellular pH. J. Gen. Microbiol. 137: 1701–1708

    Google Scholar 

  • DeFeo-Jones D, Scolnick EM, Koller R & Dahr R (1983)ras-Related gene sequences identified and isolated fromSaccharomyces cerevisiae. Nature 306: 707–709

    Google Scholar 

  • DelaFuente G (1970) Specific inactivation of yeast hexokinase induced by xylose in the presence of a phosphoryl donor substrate. Eur. J. Biochem. 16: 240–243

    Google Scholar 

  • De Vendittis E, Vitelli A, Zahn R & Fasano O (1986) Suppression of defective RAS1 and RAS2 functions in yeast by an adenylate cyclase activated by a single amino acid change. EMBO J. 5: 3657–3663

    Google Scholar 

  • Dhar R, Nieto A, Koller R, DeFeo-Jones D & Scolnick E (1984) Nucleotide sequence of tworasH related-genes isolated from the yeastSaccharomyces cerevisiae. Nucleic Acids Res. 12: 3611–3618

    Google Scholar 

  • Dumont JE, Jauniaux JC & Roger PP (1989) The cyclic AMP-mediated stimulation of cell proliferation. TIBS 14: 67–71

    Google Scholar 

  • Engelberg D, Perlman R & Levitzki A (1989) Transmembrane signalling inSaccharomyces cerevisiae. Cellular Signalling 1: 1–7

    Google Scholar 

  • Entian KD, Droll L & Mecke D (1983) Studies on rapid reversible and non-reversible inactivation of fructose-1,6-bisphosphatase and malate dehydrogenase in wild-type and glycolytic block mutants ofSaccharomyces cerevisiae. Arch. Microbiol. 134: 187–192

    Google Scholar 

  • Fasano O, Crechet JB, De Vendittis E, Zahn R, Feger G, Vitelli A & Parmeggiani A (1988) Yeast mutants temperature-sensitive for growth after random mutagenesis of the chromosomalRAS2 gene and deletion of theRAS1 gene. EMBO J. 7: 3375–3383

    Google Scholar 

  • Fedor-Chaiken M, Deschenes RJ & Broach JR (1990)SRV2, a gene required for RAS activation of adenylate cyclase in yeast. Cell 61: 329–340

    Google Scholar 

  • Fernandez R, Herrero P & Moreno F (1985) Inhibition and inactivation of glucose-phosphorylating enzymes fromSaccharomyces cerevisiae by D-xylose. J. Gen. Microbiol. 131: 2705–2709

    Google Scholar 

  • Field J, Vojtek A, Ballester R, Bolger G, Colicelli J, Ferguson K, Gerst J, Kataoka T, Michaeli T, Powers S, Riggs M, Rodgers L, Wieland I, Wheland B & Wigler M (1990) Cloning and characterization of CAP, theS. cerevisiae gene encoding the 70 kd adenylyl cyclase-associated protein. Cell 61: 319–327

    Google Scholar 

  • Fraenkel DG (1982) Carbohydrate metabolism. In: Strathern JN, Jones EW & Broach JR (Eds) The Molecular Biology of the YeastSaccharomyces. Metabolism and Gene Expression (pp 1–37). Cold Spring Harbory Laboratory, Cold Spring Harbor

    Google Scholar 

  • Fraenkel DG (1985) OnRAS gene function in yeast. Proc. Natl. Acad. Sci. USA 82: 4740–4744

    Google Scholar 

  • François J, Eraso P & Gancedo C (1987) Changes in the concentration of cAMP, fructose-2,6-bisphosphate and related metabolites and enzymes inSaccharomyces cerevisiae during growth on glucose. Eur. J. Biochem. 164: 369–373

    Google Scholar 

  • François J, Villanueva ME & Hers HG (1988) The control of glycogen metabolism in yeast. 1. Interconversionin vivo of glycogen synthase and glycogen phosphorylase induced by glucose, a nitrogen source or uncouplers. Eur. J. Biochem. 174: 551–559

    Google Scholar 

  • François J, Neves M-J & Hers H-G (1991) The control of trehalose biosynthesis inSaccharomyces cerevisiae: evidence for a catabolite inactivation and repression of trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase. Yeast 7: 575–587

    Google Scholar 

  • François J, Van Schaftingen E & Hers HG (1984) The mechanism by which glucose increases fructose-2,6-bisphosphate concentration inSaccharomyces cerevisiae. A cyclic-AMP-dependent activation of phosphofructokinase 2. Eur. J. Biochem. 145: 187–193

    Google Scholar 

  • Franzusoff AJ & Cirillo VP (1982) Uptake and phosphorylation of 2-deoxy-D-glucose by wild-type and single-kinase strains ofSaccharomyces cerevisiae. Biochim. Biophys. Acta 688: 295–304

    Google Scholar 

  • Frascotti G, Baroni D & Martegani E (1990) The glucose-induced polyphosphoinositides turnover inSaccharomyces cerevisiae is not dependent on the CDC25-RAS mediated signal transduction pathway. FEBS Lett. 274: 19–22

    Google Scholar 

  • Futcher AB (1990) Yeast cell cycle. Curr. Opinion Cell Biol. 2: 246–251

    Google Scholar 

  • Gancedo C & Schwerzmann K (1976) Inactivation by glucose of phosphoenolpyruvate carboxykinase fromSaccharomyces cerevisiae. Arch. Microbiol. 109: 221–225

    Google Scholar 

  • Gancedo JM & Gancedo C (1979) Inactivation of glyconeogenic enzymes in glycolytic mutants ofSaccharomyces cerevisiae. Eur. J. Biochem. 101: 455–460

    Google Scholar 

  • Garrett S & Broach J (1989) Loss of Ras activity inSaccharomyces cerevisiae is suppressed by disruptions of a new kinase gene,YAK1, whose product may act downstream of the cAMP-dependent protein kinase. Genes & Dev. 3: 1336–1348

    Google Scholar 

  • Garrett S, Menold MM & Broach JR (1991) TheSaccharomyces cerevisiae YAK1 gene encodes a protein kinase that is induced by arrest early in the cell cycle. Mol. Cell. Biol. 11: 4045–4052

    Google Scholar 

  • Gerst JE, Ferguson K, Vojtek A, Wigler M & Field J (1991) CAP is a bifunctional component of theSaccharomyces cerevisiae adenylyl cyclase complex. Mol. Cell. Biol. 11: 1248–1257

    Google Scholar 

  • Gibbs JB & Marshall MS (1989) Theras oncogene-an important regulatory element in lower eucaryotic organisms. Microbiol. Rev. 53: 171–185

    Google Scholar 

  • Gilman AG (1987) G Proteins: transducers of receptor-generated signals. Annu. Rev. Biochem. 56: 615–649

    Google Scholar 

  • Hadwiger JA, Wittenberg C, Richardson HE, Lopes MD & Reed SI (1989) A family of cyclin homologs that control the G1 phase in yeast. Proc. Natl. Acad. Sci. USA 86: 6255–6259

    Google Scholar 

  • Hanic-Joyce PJ, Johnston GC & Singer RA (1987) Regulated arrest of cell proliferation mediated by yeastprt1 mutations. Exp. Cell Res. 172: 134–145

    Google Scholar 

  • Hartwell LH (1974)Saccharomyces cerevisiae cell cycle. Bacteriol. Rev. 38: 164–198

    Google Scholar 

  • Hartwell LH & McLaughlin CS (1968) Mutants of yeast with temperature-sensitive isoleucyl-tRNA synthetases. Poc. Natl. Acad. Sci. USA 59: 422–428

    Google Scholar 

  • Hartwell LH, Mortimer RK, Culotti J & Culotti M (1973) Genetic control of the cell division cycle in yeast: genetic analysis of cdc mutants. Genetics 74: 267–286

    Google Scholar 

  • Hartwell LH, Culotti J, Pringle JR & Reid BJ (1974) Genetic control of the cell division cycle in yeast. Science 183: 46–51

    Google Scholar 

  • Hohmann S, Huse K, Valentin E, Mbonyi K, Thevelein JM & Zimmermann FK (1992) Glucose-induced regulatory defects in theSaccharomyces cerevisiae growth initiation mutantbyp1 and identification ofMIG1 as a partial suppressor. J. Bacteriol. (in press)

  • Holzer H (1984) Mechanism and function of reversible phosphorylation of fructose-1,6-bisphosphatase in yeast. In: Cohen P (Ed) Molecular Aspects of Cellular Regulation, Vol 3 (pp 143–154). Elsevier, Amsterdam

    Google Scholar 

  • Hottiger T, Boller T & Wiemken A (1989) Correlation of trehalose content and heat resistance in yeast mutants altered in the RAS/adenylate cyclase pathway: is trehalose a thermoprotectant? FEBS Lett. 255: 431–434

    Google Scholar 

  • Iida H, Sakaguchi S, Yagawa Y, Anraku Y (1990) Cell cycle control by Ca2+ inSaccharomyces cerevisiae. J. Biol. Chem. 265: 21216–21222

    Google Scholar 

  • Jacquet M & Camonis J (1985) Contrôle du cycle de division cellulaire et de la sporulation chezSaccharomyces cerevisiae par le système de l'AMP cyclique. Biochemie 67: 35–43

    Google Scholar 

  • Jaspers HTA & Van Steveninck J (1975) Transport-associated phosphorylation of 2-deoxy-D-glucose inSaccharomyces fragilis. Biochim. Biophys. Acta 406: 370–385

    Google Scholar 

  • Johnston GC, Pringle JR & Hartwell LH (1977) Coordination of growth with cell division in the yeastSaccharomyces cerevisiae. Exp. Cell Res. 105: 79–98

    Google Scholar 

  • Kaibuchi K, Miyajima A, Arai K & Matsumoto K (1986) Possible involvement of RAS-encoded proteins in glucose-induced inositolphospholipid turnover inSaccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 83: 8172–8176

    Google Scholar 

  • Kataoka T, Powers S, McGill C, Fasano O, Strathern J, Broach J & Wigler M (1984) Genetic analysis of yeastRAS1 andRAS2 genes. Cell 37: 437–445

    Google Scholar 

  • Kataoka T, Broek D & Wigler M (1985a) DNA sequence and characterization of theS. cerevisiae gene encoding adenylate cyclase. Cell 43: 493–505

    Google Scholar 

  • Kataoka T, Powers S, Cameron S, Fasano O, Goldfarb M, Broach J & Wigler M (1985b) Functional homology of mammalian and yeastRAS genes. Cell 40: 19–26

    Google Scholar 

  • Kato H, Uno I, Ishikawa T & Takenawa T (1989) Activation of phosphatidylinositol kinase and phosphatidyl-4-phosphate kinase by cAMP inSaccharomyces cerevisiae. J. Biol. Chem. 264: 3316–3321

    Google Scholar 

  • Kim J-H & Powers S (1991) Overexpression of RPI1, a novel inhibitor of the yeast ras-cyclic AMP pathway, down-regulates normal but not mutationally activated ras functions. Mol. Cell. Biol. 11: 3894–3904

    Google Scholar 

  • Kruckeberg AL & Bisson LF (1990) TheHXT2 gene ofSaccharomyces cerevisiae is required for high-affinity glucose transport. Mol. Cell. Biol. 10: 5903–5913

    Google Scholar 

  • Leao C & Van Uden N (1984) Effects of ethanol and other alkanols on passive proton influx in the yeastSaccharomyces cerevisiae. Biochim. Biophys. Acta 774: 43–48

    Google Scholar 

  • Liao H & Thorner J (1980) Yeast mating pheromone α factor inhibits adenylate cyclase. Proc. Natl. Acad. Sci. USA 77: 1898–1902

    Google Scholar 

  • Linder P & Prat A (1990) Baker's yeast, the new work horse in protein synthesis studies-analyzing eukaryotic translation initiation. Bio Essays 12: 519–526

    Google Scholar 

  • Londesborough J & Lukkari TM (1980) The pH and temperature dependence of the activity of the high Km cyclic nucleotide phosphodiesterase of baker's yeast. J. Biol. Chem. 255: 9262–9267

    Google Scholar 

  • Malone RE (1990) Dual regulation of meiosis in yeast. Cell 61: 375–378

    Google Scholar 

  • Marshall MS, Gibbs JB, Scolnick EM & Sigal IS (1987) Regulatory function of theSaccharomyces cerevisiae RAS C-terminus. Mol. Cell. Biol. 7: 2309–2315

    Google Scholar 

  • Martegani E, Vanoni M & Baroni M (1984) Macromolecular synthesis in the cell cycle mutantcdc25 of budding yeast. Eur. J. Biochem. 144: 205–210

    Google Scholar 

  • Martegani E, Baroni M & Wanoni M (1986) Interaction of cAMP with the CDC25-mediated step in the cell cycle of budding yeast. Exp. Cell Res. 162: 544–548

    Google Scholar 

  • Matsumoto K, Uno I, Toh-e A, Ishikawa T & Oshima Y (1982) Cyclic AMP may not be involved in catabolite repression inSaccharomyces cerevisiae: evidence from mutants capable of utilizing it as an adenine source. J. Bacteriol. 150: 277–285

    Google Scholar 

  • Matsumoto K, Uno I & Ishikawa T (1983) Initiation of meiosis in yeast mutants defective in adenylate cyclase and cyclic AMP-dependent protein kinase. Cell 32: 417–423

    Google Scholar 

  • Matsumoto K, Uno I & Ishikawa T (1985) Genetic analysis of the role of cAMP in yeast. Yeast 1: 15–24

    Google Scholar 

  • Mazon MJ, Gancedo JM & Gancedo C (1982) Inactivation of yeast fructose-1,6-bisphosphatase. In vivo phosphorylation of the enzyme. J. Biol. Chem. 257: 1128–1130

    Google Scholar 

  • Mbonyi K, Beullens M, Detremerie K, Geerts L & Thevelein JM (1988) Requirement of one functionalRAS gene and inability of an oncogenicras-variant to mediate the glucose-induced cAMP signal in the yeastSaccharomyces cerevisiae. Mol. Cell. Biol. 8: 3051–3057

    Google Scholar 

  • Mbonyi K, Van Aelst L, Argüelles JC, Jans AWH & Thevelein JM (1990) Glucose-induced hyperaccumulation of cAMP and absence of glucose repression in yeast strains with reduced activity of cAMP-dependent protein kinase. Mol. Cell. Biol. 10: 4518–4523

    Google Scholar 

  • Meredith SA & Romano AH (1977) Uptake and phosphorylation of 2-deoxy-D-glucose by wild type and respiration-deficient baker's yeast. Biochim. Biophys. Acta 497: 745–759

    Google Scholar 

  • Mitts MR, Grant DB & Heideman W (1990) Adenylate cyclase inSaccharomyces cerevisiae is a peripheral membrane protein. Mol. Cell. Biol. 10: 3873–3883

    Google Scholar 

  • Mitts MR, Bradshaw-Rouse J & Heideman W (1991) Interactions between adenylate cyclase and the yeast GTPase-activating protein IRA1. Mol. Cell. Biol. 11: 4591–4598

    Google Scholar 

  • Müller D & Holzer H (1981) Regulation of fructose-1,6-bisphosphatase in yeast by phosphorylation/dephosphorylation. Biochem. Biophys. Res. Commun. 103: 926–933

    Google Scholar 

  • Munder T & Küntzel H (1989) Glucose-induced cAMP signaling inSaccharomyces cerevisiae is mediated by the CDC25 protein. FEBS Lett. 242: 341–345

    Google Scholar 

  • Nakajima H, Oshima I, Yashiro M, Yoda K, Yamasaki M & Tamura G (1987) NovelSaccharomyces cerevisiae temperature-sensitivecyr1 mutant which accumulates glycogen particles. Agric. Biol. Chem. 51: 2679–2689

    Google Scholar 

  • Natsoulis G, Hilger F & Fink GR (1986) TheHTS1 gene encodes both the cytoplasmic and mitochondrial histidine tRNA synthetases ofS. cerevisiae. Cell 46: 235–243

    Google Scholar 

  • Nikawa J, Cameron S, Toda T, Ferguson KW & Wigler M (1987a) Rigorous feedback control of cAMP levels inSaccharomyces cerevisiae. Genes & Dev. 1: 931–937

    Google Scholar 

  • Nikawa J, Sass P & Wigler M (1987b) Cloning and characterization of the low-affinity cyclic AMP phosphodiesterase gene ofSaccharomyces cerevisiae. Mol. Cell. Biol. 7: 3629–3636

    Google Scholar 

  • Panek AD, Sampaio AL, Braz GC, Baker SJ & Mattoon JR (1979) Genetic and metabolic control of trehalose and glycogen synthesis. New relationships between energy reserves, catabolite repression and maltose utilization. Cell. Mol. Biol. 25: 345–354

    Google Scholar 

  • Panek AC, François J & Panek AD (1988) New insights into a mutant ofSaccharomyces cerevisiae having impaired sugar uptake and metabolism. Curr. Gen. 13: 15–20

    Google Scholar 

  • Pardee AB (1974) A restriction point for control of normal animal cell proliferation. Proc. Natl. Acad. Sci. USA 71: 1286–1290

    Google Scholar 

  • Perlman R, Eilam Y, Padan E, Simchen G & Levitzki A (1989) Rapid intracellular alkalinization ofSaccharomyces cerevisiae Mata cells in response to Alpha-Factor requires the Cdc25 gene product. Cellular Signalling 1: 577–586

    Google Scholar 

  • Petitjean A, Hilger F & Tatchell K (1990) Comparison of thermosensitive alleles of theCdc25 gene involved in the cAMP metabolism ofSaccharomyces cerevisiae. Genetics 124: 797–806

    Google Scholar 

  • Piper P (1990) Interdependence of several heat shock gene activations, cyclic AMP decline and changes at the plasma membrane ofSaccharomyces cerevisiae. A. v. Leeuwenhoek 58: 195–201

    Google Scholar 

  • Postma PW & Lengeler JW (1985) Phosphoenolpyruvate:carbohydrate phosphotransferase system of bacteria. Microbiol. Rev. 49: 232–269

    Google Scholar 

  • Powers S, Kataoka T, Fasano O, Goldfarb M, Strathern J, Broach J & Wigler M (1984) Genes inS. cerevisiae encoding proteins with domains homologous to the mammalian ras proteins. Cell 36: 607–612

    Google Scholar 

  • Praekelt UM & Meacock PA (1990) HSP12, a new small heat shock gene ofSaccharomyces cerevisiae: analysis of structure, regulation and function. Mol. Gen. Genet. 223: 97–106

    Google Scholar 

  • Pringle JR & Hartwell LH (1981) TheSaccharomyces cerevisiae cell cycle. In: Strathern JN, Jones EW & Broach JR (Eds) The Molecular Biology of the YeastSaccharomyces. Metabolism and Gene Expression (pp 97–142). Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • Reed SI (1980) The selection ofS. cerevisiae mutants defective in the start event of cell division. Genetics 95: 561–577

    Google Scholar 

  • Reed SI (1991) G1-specific cyclins: in search of an S-phasepromoting factor. Tr. Genet. 7: 95–99

    Google Scholar 

  • Resnick RJ & Racker E (1988) Phosphorylation of theRAS2 gene product by kinase A inhibits the activation of yeast adenylyl cylase. Proc. Natl. Acad. Sci. USA 85: 2474–2478

    Google Scholar 

  • Robinson LC, Gibbs JB, Marshall MS, Sigal IS & Tatchell K (1987) cdc25: a component of the Ras-adenylate cyclase pathway inSaccharomyces cerevisiae. Science 235: 1218–1221

    Google Scholar 

  • Rose M, Entian KD, Hofmann L & Vogel RF (1988) Irreversible inactivation ofSaccharomyces cerevisiae fructose-1,6-bisphosphatase independent of protein phosphorylation at Ser 11. FEBS Lett. 241: 55–59

    Google Scholar 

  • Rose M, Albig W & Entian KD (1991) Glucose repression inSaccharomyces cerevisiae is directly associated with hexose phosphorylation by hexokinase-PI and hexokinase-PII. Eur. J. Biochem. 199: 511–518

    Google Scholar 

  • Saier MHJr, Wu L-F & Reizer J (1990) Regulation of bacterial physiological processes by three types of protein phosphorylating systems. Tr. Biochem. Sci. 15: 391–395

    Google Scholar 

  • Sass P, Field J, Nikawa J, Toda T & Wigler M (1986) Cloning and characterization of the high-affinity cAMP phosphodiesterase ofS. cerevisiae. Proc. Natl. Acad. Sci. USA 83: 9303–9307

    Google Scholar 

  • Schuddemat J, Van den Broek PJA & Van Steveninck J (1986) Effect of xylose incubation on the glucose transport system inSaccharomyces cerevisiae. Biochim. Biophys. Acta 861: 489–493

    Google Scholar 

  • Shin D-Y, Matsumoto K, Iida H, Uno I & Ishikawa T (1987a) Heat shock response ofSaccharomyces cerevisiae Mutants altered in cyclic AMP-dependent protein phosphorylation. Mol. Cell. Biol. 7: 244–250

    Google Scholar 

  • Shin D-Y, Uno I & Ishikawa T (1987b) Control of the G1-G0 transition and G0 protein synthesis by cyclic AMP inSaccharomyces cerevisiae. Curr. Genet. 12: 577–582

    Google Scholar 

  • Sols A (1976) The Pasteur effect in the allosteric era. In: Kornberg A & Ochoa S (Eds) Reflections on Biochemistry (pp 199–206). Pergamon Press, Oxford

    Google Scholar 

  • Suoranta K (1985) Cyclic AMP phosphodiesterase activities in growing cells of baker's yeast (Saccharomyces cerevisiae). J. Cyclic Nucleot. Prot. Phosphor. Res. 10: 121–127

    Google Scholar 

  • Suoranta K & Londesborough J (1984) Purification of intact and nicked forms of a zinc-containing, Mg+ dependent, low Km cyclic AMP phosphodiesterase from baker's yeast. J. Biol. Chem. 259: 6964–6971

    Google Scholar 

  • Tanaka K, Matsumoto K, Toh-e A (1988) Dual regulation of the expression of the polyubiquitin gene by cyclic AMP and heat shock in yeast. EMBO J. 7: 495–502

    Google Scholar 

  • Tanaka K, Matsumoto K & Toh-e A (1989) Ira1, an inhibitory regulator of the RAS-cyclic AMP pathway inSaccharomyces cerevisiae. Mol. Cell. Biol. 9: 757–768

    Google Scholar 

  • Tanaka K, Nakafuku M, Satoh T, Marshall MS, Gibbs JB, Matsumoto K, Kaziro Y & Toh-e A (1990a)S. cerevisiae genesIRA1 andIRA2 encode proteins that may be functionnally equivalent to mammalian ras GTPase activating protein. Cell 60: 803–807

    Google Scholar 

  • Tanaka K, Nakafuku M, Tamanoi F, Kaziro Y, Matsumoto K & Toh-e A (1990b)IRA2, a second gene ofSaccharomyces cerevisiae that encodes a protein with a domain homologous to mammalianras GTPase-activating protein. Mol. Cell. Biol. 10: 4303–4313

    Google Scholar 

  • Tatchell K (1986)RAS genes and growth control inSaccharomyces cerevisiae. J. Bacteriol. 166: 364–367

    Google Scholar 

  • Tatchell K, Chaleff DT, DeFeo-Jones D, Scolnick EM (1984) Requirement of either of a pair ofras-related genes ofSaccharomyces cerevisiae for spore viability. Nature 309: 523–527

    Google Scholar 

  • Tatchell K, Robinson LC & Breitenbach M (1985)RAS2 ofSaccharomyces cerevisiae is required for gluconeogenic growth and proper response to nutrient limitation. Proc. Natl. Acad. Sci. USA 82: 3785–3789

    Google Scholar 

  • Thevelein JM (1984a) Cyclic-AMP content and trehalase activation in vegetative cells and ascospores of yeast. Arch. Microbiol. 138: 64–67

    Google Scholar 

  • Thevelein JM (1984b) Regulation of trehalose mobilization in fungi. Microbiol. Rev. 48: 42–59

    Google Scholar 

  • Thevelein JM (1988) Regulation of trehalase activity by phosphorylation-dephosphorylation during developmental transitions in fungi. Exp. Mycol. 12: 1–12

    Google Scholar 

  • Thevelein JM (1991) Fermentable sugars and intracellular acidification as specific activators of the RAS adenylate cyclase signalling pathway in yeast — the relationship to nutrient-induced cell cycle control. Mol. Microbiol. 5: 1301–1307

    Google Scholar 

  • Thevelein JM & Beullens M (1985) Cyclic AMP and the stimulation of trehalase activity in the yeastSaccharomyces cerevisiae by carbon sources, nitrogen sources and inhibitors of protein synthesis. J. Gen. Microbiol. 131: 3199–3209

    Google Scholar 

  • Toda T, Uno I, Ishikawa T, Powers S, Kataoka T, Broek D, Cameron S, Broach J, Matsumoto K & Wigler M (1985) In yeast, Ras proteins are controlling elements of adenylate cyclase. Cell 40: 27–36

    Google Scholar 

  • Toda T, Cameron S, Sass P, Zoller M, Scott JD, McBullen B, Hurwitz M, Krebs EG & Wigler M (1987a) Cloning and characterization ofBCY1, a locus encoding a regulatory subunit of the cyclic AMP-dependent protein kinase inSaccharomyces cerevisiae. Mol. Cell. Biol. 7: 1371–1377

    Google Scholar 

  • Toda T, Cameron S, Sass P, Zoller M & Wigler M (1987b) Three different genes inSaccharomyces cerevisiae encode the catalytic subunits of the cAMP-dependent protein kinase. Cell 50: 277–287

    Google Scholar 

  • Toda T, Cameron S, Sass P & Wigler M (1988)SCH9, a gene ofSaccharomyces cerevisiae that encodes a protein distinct from, but functionally and structurally related to cAMP-dependent protein kinase catalytic subunits. Genes & Dev. 2: 517–527

    Google Scholar 

  • Unger MW & Hartwell LH (1976) Control of cell division inSaccharomyces cerevisiae by methionyl-tRNA. Proc. Natl. Acad. Sci. USA 73: 1664–1668

    Google Scholar 

  • Uno I, Fukami K, Kato H, Takenawa T & Ishikawa T (1988) Essential role for phosphatidylinositol 4,5-biphosphate in yeast cell proliferation. Nature 333, 188–190

    Google Scholar 

  • Van Aelst L, Boy-Marcotte E, Camonis JH, Thevelein JM & Jacquet M (1990) The C-terminal part of theCDC25 gene product plays a key role in signal transduction in the glucose-induced modulation of cAMP level inSaccharomyces cerevisiae. Eur. J. Biochem. 193: 675–680

    Google Scholar 

  • Van Aelst L, Hohmann S, Zimmermann K, Jans AWH & Thevelein JM (1991a) A yeast homologue of the bovine lens fibre MIP gene family complements the growth defect of aSaccharomyces cerevisiae mutant on fermentable sugars but not its defect in glucose-induced RAS-mediated cAMP signalling. EMBO J. 10: 2095–2104

    Google Scholar 

  • Van Aelst L, Jans AWH & Thevelein JM (1991b) Involvement of theCDC25 gene product in the signal transmission pathway of the glucose-induced RAS-mediated cAMP signal in the yeastSaccharomyces cerevisiae. J. Gen. Microbiol. 137: 341–349

    Google Scholar 

  • Van de Poll KW & Schamhart DHJ (1977) Characterization of a regulatory mutant of fructose-1,6-diphosphatase inSaccharomyces carlsbergensis. Mol. Gen. Genet. 154: 61–66

    Google Scholar 

  • Van de Poll KW, Kerkenaar A & Schamhart DHJ (1974) Isolation of a regulatory mutant of fructose-1,6-diphosphatase in Saccharomyces carlsbergensis. J. Bacteriol. 117: 965–970

    Google Scholar 

  • Van der Plaat JB (1974) Cyclic 3′,5′-adenosine monophosphate stimulates trehalose degradation in bakers' yeast. Biochem. Biophys. Res. Commun. 56: 580–587

    Google Scholar 

  • Van Steveninck J (1968) Transport and transport-associated phosphorylation of 2-deoxy-D-glucose in yeast. Biochim. Biophys. Acta 163: 386–394

    Google Scholar 

  • Verdier JM, Camonis JH & Jacquet M (1989) Cloning ofCDC33: a gene essential for growth and sporulation which does not interfere with cAMP production ofSaccharomyces cerevisiae. Yeast 5: 79–90

    Google Scholar 

  • Vojtek A, Haarer B, Field J, Gerst J, Pollard D, Brown S & Wigler M (1991) Evidence for a functional link between profilin and CAP in the yeastS. cerevisiae. Cell 66: 497–505

    Google Scholar 

  • Weitzel G, Pilatus U & Rensing L (1987) The cytoplasmic pH, ATP content and total protein synthesis rate during heatshock protein inducing treatments in yeast. Exp. Cell Res. 170: 64–79

    Google Scholar 

  • Werner-Washburne M, Becker J, Kosic-Smithers J & Craig EA (1989) Yeast Hsp70 RNA levels vary in response to the physiological status of the cell. J. Bacteriol. 171: 2680–2688

    Google Scholar 

  • Wiemken A (1990) Trehalose in yeast, stress protectant rather than reserve carbohydrate. A. v. Leeuwenhoek 58: 209–217

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thevelein, J.M. The RAS-adenylate cyclase pathway and cell cycle control inSaccharomyces cerevisiae . Antonie van Leeuwenhoek 62, 109–130 (1992). https://doi.org/10.1007/BF00584466

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00584466

Key words

Navigation