Skip to main content
Log in

Glucose metabolism and left ventricular dysfunction are normalized by insulin and islet transplantation in mild diabetes in the rat

  • Originals
  • Published:
Acta Diabetologica Aims and scope Submit manuscript

Abstract

The aim of the present experimental study in the rat heart was to assess cardiac performance and metabolism in mild diabetes of 2 months' duration (postprandial blood sugar levels of 307±101 mg/dl and nearly normal fasting blood glucose of 102±40 mg/dl) using the working rat heart model at physiological workload with a perfusion time of 60 min. We also compared the effect of two forms of therapy for diabetes, islet transplantation and insulin therapy (s.c.), after 2 months. A 36% reduction in glucose utilization is metabolically characteristic for the diabetic heart, mainly caused by a 55% reduced glucose uptake (P<0.001), but also by a nearly twofold increased lactate and pyruvate production (P<0.001). This reduced carbohydrate metabolism is accompanied by a 37% reduction of oxygen uptake (P<0.001) as well as a significant reduction in myocardial ATP and CP levels (P<0.001), resulting in a significantly reduced cardiac output (P<0.001). Moreover, the balance of energy reveals that the diabetic heart obtains 46% of its energy requirements for 1 h from endogenous glycogen, whereas the control heart obtains 91% of its energy needs (i.e. preferentially) from exogenous glucose (only 9% from endogenous glycogen). Both investigated therapeutic interventions led to a complete reversibility of the hemodynamic and metabolic alterations, indicating that the cause of diabetic cardiomyopathy in this model of mild and short-term diabetes is due to a defect in cardiac carbohydrate metabolism, which is correctable by insulin administration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allard MF, Schönekess BO, Henning SL, English DR, Lopaschuk GD, Contribution of oxidative metabolism and glycolysis to ATP production in hypertrophied hearts. Am J Physiol 267:H742-H750, 1994

    PubMed  CAS  Google Scholar 

  2. Bergmeyer HU, Methoden der enzymatischen Analyse Verlag Chemie, Weinheim, 1974

    Google Scholar 

  3. Bretzel RG, Hering BJ, Linn T, Strödter D, Wiegand S, Woehrle M, Zekorn T, Islet transplantation in rodents. In: Bretzel RG (ed), Diabetes mellitus. Immunological and dynamic aspects of insulin substitution. Springer, Berlin Heidelberg New York, pp 229–252, 1990

    Google Scholar 

  4. Chatham JC, Forder JR, A13C-NMR study of glucose oxidation in the intact functioning rat heart following diabetes-induced cardiomyopathy. J Mol Cell Cardiol 25:1203–1213, 1993

    Article  PubMed  CAS  Google Scholar 

  5. Denton RM, Randle PJ, Concentrations of glycerides and phospholipids in rat heart and gastrocnemius muscles. Biochem J 104:416–422, 1967

    PubMed  CAS  Google Scholar 

  6. Eggstein M, Kreutz FH, Eine neue Bestimmung der Neutralfette im Blutserum und Gewebe. Klin Wochenschr 44: 262–273, 1966

    Article  PubMed  CAS  Google Scholar 

  7. Gamble J, Lopaschuk GD, Glycolysis and glucose oxidation during reperfusion of ischemic heart from diabetic rats. Biochim Biophys Acta 1225:191–199, 1994

    PubMed  CAS  Google Scholar 

  8. Garvey GT, Hardin D, Juhaszova M, Dominguez JH, Effects of diabetes on myocardial glucose transport system in rats: implications for diabetic cardiomyopathy. Am J Physiol 264: H837-H844, 1993

    PubMed  CAS  Google Scholar 

  9. Jackson CV, McGrath GM, Tahiliani AG, Vadlamudi RVSV, McNeill JH, A functional and ultrastructural analysis of experimental rat myocardium. Diabetes 34:876–883, 1985

    PubMed  CAS  Google Scholar 

  10. Kainulainen H, Schurmann A, Vilja P, Joost HG, In-vivo glucose uptake and glucose transporter proteins GLUT1 and GLUT3 in brain tissue from streptozotocin-diabetic rats. Acta Physiol Scand 149:221–225, 1993

    Article  PubMed  CAS  Google Scholar 

  11. Kainulainen H, Breiner M, Schurmann A, Marttinen A, Virjo A, Joost HG, In vivo glucose uptake and glucose transporter proteins GLUT1 and GLUT4 in heart and various types of skeletal muscle from streptozotocin-diabetic rats. Biochim Biophys Acta 1225:275–282, 1994

    PubMed  CAS  Google Scholar 

  12. Keppler D, Decker K, Glykogen: Bestimmung mit Amyloglu-cosidase. In: Bergmeyer HU (ed) Methoden der enzymatischen Analyse, Vol II. Verlag Chemie, Weinheim, pp 1171–1176, 1974

    Google Scholar 

  13. Kerbey AL, Radcliffe PM, Randle PJ, Diabetes and the control for pyruvate dehydrogenase in rat heart mitochondria by concentration ratios of adenosine triphosphate/adenosine diphosphate, of reduced/oxidised nicotinamide-adenine dinucleotide and of acetylcoenzyme A/coenzyme A. Biochem J 164: 509–519, 1977

    PubMed  CAS  Google Scholar 

  14. Kobayashi K, Neely JR, Control of maximum rates of glycolysis in rat cardiac muscle. Circ Res 44:166–175, 1979

    PubMed  CAS  Google Scholar 

  15. Kobayashi K, Neely JR, Effects of increased cardiac work on pyruvate-dehydrogenase activity in hearts from diabetic animals. J Mol Cell Cardiol 15:347–357, 1983

    Article  PubMed  CAS  Google Scholar 

  16. Lamprecht W, Trautschold I, Adenosin-5′-triphosphat. In: Bergmer HU (ed) Methoden der enzymatischen Analyse, Vol II. Verlag Chemie, Weinheim, pp 1251–1259, 1974

    Google Scholar 

  17. Lamprecht W, Stein P, Heinz F, Weisser H, Creatinphosphat. In: Bergmeyer HU (ed) Methoden der enzymatischen Analyse, Vol II. Verlag Chemie, Weinheim, pp 1729–1733, 1974

    Google Scholar 

  18. Lopaschuk GD, Spafford M, Response of isolated working hearts to fatty acids and carnitine palmitoyltransferase I inhibition during reduction of coronary flow in acutely and chronically diabetic rats. Circ Res 65:378–387, 1989

    PubMed  CAS  Google Scholar 

  19. Lopaschuk GD, Spafford MA, Energy substrate utilization by isolated working hearts from newborn rabbits. Am J Physiol 258:H1274-H1280, 1990

    PubMed  CAS  Google Scholar 

  20. Lopaschuk GD, Tsang H, Metabolism of palmitate in isolated working hearts from spontaneously diabetic “BB” Wistar rats. Circ Res 61:853–858, 1987

    PubMed  CAS  Google Scholar 

  21. Murthy KV, Shipp JC, Heart triglyceride synthesis in diabetes: selective increase in activity of enzymes of phosphatidate synthesis. J Mol Cell Cardiol 12:299–309, 1980

    Article  PubMed  CAS  Google Scholar 

  22. Neely JR, Liebermeister H, Battersby EJ, Morgan HE, Effect of pressure development on oxygen consumption by isolated rat heart. Am J Physiol 212:804–814,1967

    PubMed  CAS  Google Scholar 

  23. Neely JR, Denton RM, England PJ, Randle PJ, The effects of increased heart work on the tricarboxylate cycle and its interactions with glycolysis in the perfused rat heart. Biochem J 128: 147–159, 1972

    PubMed  CAS  Google Scholar 

  24. Nicholl TA, Lopaschuk GD, McNeill JH, Effects of free fatty acids and dichloroacetate on isolated working diabetic rat heart. Am J Physiol 261:H1053-H1059, 1991

    PubMed  CAS  Google Scholar 

  25. Penpargkul S, Schaible T, Yipinstoi T, Scheuer J, The effect of diabetes on performance and metabolism of rat hearts. Circ Res 47:911–927, 1980

    PubMed  CAS  Google Scholar 

  26. Pieper GM, Murray WJ, Salhany JM, Wu ST, Eliott TS, Salient effects ofL-carnitine on adenine-nucleotide loss of coenzyme A acylation in the diabetic heart perfused with excess palmitic acid A phosphorous-31 NMR and chemical extract study. Biochim Biophys Acta 803:229–240, 1984

    Article  PubMed  CAS  Google Scholar 

  27. Postic C, Leturgue A, Printz RL, Maulard P, Loizeau M, Granner DK, Girard J. Development and regulation of glucose transporter and hexokinase expression in rat. Am J Physiol 266: E548-E559, 1994

    PubMed  CAS  Google Scholar 

  28. Puckett SW, Reddy WJ, A decrease in the malate-aspartate-shuttle and glutamate translocase activity in heart mitochondria from alloxan-diabetic rats. J Mol Cell Cardiol 11:173–187, 1979

    Article  PubMed  CAS  Google Scholar 

  29. Reinilä A, Akerblom HK, Ultrastructure of heart muscle in short-term diabetic rats: influence of insulin treatment. Diabetologia 27:397–402, 1984

    Article  PubMed  Google Scholar 

  30. Rösen P, Adrian M, Feuerstein J, Reinauer H, Glycolysis and glucose oxidation in the rat heart under nonrecirculating perfusion conditions. Basic Res Cardiol 79:307–312, 1984

    Article  PubMed  Google Scholar 

  31. Rösen P, Windeck P, Zimmer HG, Frentel H, Bürring KF, Reinauer H, Myocardial performance and metabolism in non-ketotic diabetic rats: myocardial function and metabolism in vivo and the isolated perfused heart under the influence of insulin and octanoate. Basic Res Cardiol 81:620–635, 1986

    Article  PubMed  Google Scholar 

  32. Stroedter D, Willmann P, Willmann J, Federlin K, Schaper W, Results of a balance of energy in the diabetic heart. In: Nagano M, Dhalla NS (eds) The diabetic heart. Raven Press, New York, pp 383–393, 1991

    Google Scholar 

  33. Stroedter D, Mahler M, Bretzel RG, Federlin K, Long-term therapy with islet transplantation is more effective with regard to the reversibility of diabetes-induced hemodynamic and metabolic cardiac alterations. Transplant Proc 26:672, 1994

    Google Scholar 

  34. Sudgen PH, Smith DM, The effects of insulin on glucose uptake and lactate release in perfused working rat heart preparations. Biochem J 206:473–479, 1982

    Google Scholar 

  35. Taegtmeyer H, Passmore JM, Defective energy metabolism of the heart in diabetes. Lancet 19:139–141, 1985

    Article  Google Scholar 

  36. Taegtmeyer H, Hems R, Krebs HA, Utilisation of energy-providing substrates in the isolated working rat heart. Biochem J 186:701–711, 1980

    PubMed  CAS  Google Scholar 

  37. Tahiliani AG, McNeill JH, Diabetes induced abnormalities in the myocardium. Life Sci 38:959–974, 1986

    Article  PubMed  CAS  Google Scholar 

  38. Tahiliani AG, Lopaschuk GD, McNeill JH, Effect of insulin treatment on long-term diabetes-induced alteration of myocardial function. Gen Pharmacol 15:545–547,1984

    PubMed  CAS  Google Scholar 

  39. Wall SR, Lopaschuk GD, Glucose oxidation rates in fatty-acid perfused isolated working hearts from diabetic rats. Biochim Biophys Acta 1006:97–103, 1989

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stroedter, D., Schmidt, T., Bretzel, R.G. et al. Glucose metabolism and left ventricular dysfunction are normalized by insulin and islet transplantation in mild diabetes in the rat. Acta Diabetol 32, 235–243 (1995). https://doi.org/10.1007/BF00576256

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00576256

Key words

Navigation