Skip to main content
Log in

Effect of stacking-fault energy on thermal activation of attractive junctions in change-in-stress creep of FCC metals

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Change-in-stress creep experiments involving increments as well as decrements of stress have been conducted on Ag, Au, Cu, Ni, Pb, Pd and Pt at temperatures at and below room temperature. The activation volumes (v) evaluated from the flow parameter,B (given byB=(Δ lnε/Δτ)=v/kT) obtained by making stress increments, were found to be in the range 102 to 104 b 3, indicating the rate-controlling mechanism to be the intersection of glide and forest dislocations. The value of the flow parameter was found to be higher for creep following stress decrements than increments, the difference being a decreasing function of stress and temperature. The results were analysed in terms of the model, earlier suggested for aluminium, based on the formation of attractive junctions on stress decrement which causes a change in the number of elements participating in the activation event. The stacking-fault widths and energies evaluated for these metals based on the above model are found to be in good agreement with the reported values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. H. Cottrell, “Dislocations and Plastic Flow in Crystals” (Clarendon Press, Oxford, 1953) p. 206.

    Google Scholar 

  2. P. R. Thornton andP. B. Hirsch,Phil. Mag. 3 (1958) 738.

    Google Scholar 

  3. H. Conrad,Acta Met. 6 (1958) 339.

    Google Scholar 

  4. S. K. Mitra, P. W. Osborne, andJ. E. Dorn,Trans. Met. Soc. AIME 221 (1961) 1206.

    Google Scholar 

  5. J. L. Lytton, L. A. Shepard, andJ. E. Dorn,ibid 212 (1958) 220.

    Google Scholar 

  6. Y. A. Rocher, L. A. Shepard, andJ. E. Dorn,ibid 215 (1959) 316.

    Google Scholar 

  7. P. R. Landon, J. L. Lytton, L. A. Shepard, andJ. E. Dorn,Trans. ASM 51 (1959) 900.

    Google Scholar 

  8. Y. V. R. K. Prasad, D. H. Sastry, andK. I. Vasu,Curr. Sci. 38 (1969) 403.

    Google Scholar 

  9. Idem, Met. Sci. J. 4 (1970) 69.

    Google Scholar 

  10. Idem, Acta Met. 17 (1969) 1453.

    Google Scholar 

  11. Idem, Curr. Sci. 39 (1970) 97.

    Google Scholar 

  12. Idem, Met. Trans., to be published.

  13. H. Conrad, L. Hays, G. Schoeck, andH. Wiedersich,Acta Met. 9 (1961) 367.

    Google Scholar 

  14. Y. V. R. K. Prasad, D. H. Sastry, andK. I. Vasu,J. Ind. Inst. Science 51 (1969) 377.

    Google Scholar 

  15. O. H. Wyatt,Proc. Phys. Soc. 66 (1953) 459.

    Google Scholar 

  16. H. Conrad,J. Metals 16 (1964) 582.

    Google Scholar 

  17. Z. S. Basinski,Phil. Mag. 4 (1959) 393.

    Google Scholar 

  18. A. Seeger,ibid 46 (1955) 1194.

    Google Scholar 

  19. A. H. Cottrell andR. J. Stokes,Proc. Roy. Soc. A233 (1955) 17.

    Google Scholar 

  20. S. K. Mitra, andJ. E. Dorn,Trans. Met. Soc. AIME 227 (1963) 1015.

    Google Scholar 

  21. A. Seeger, in “Dislocations and Mechanical Properties of Crystals” (Wiley, New York, 1957) p. 243.

    Google Scholar 

  22. J. P. Hirth andJ. Lothe, “Theory of Dislocations” (McGraw-Hill, London, 1968) p. 540.

    Google Scholar 

  23. D. Mclean, “Mechanical Properties of Metals” (Wiley, New York, 1962) pp. 33, 98.

    Google Scholar 

  24. V. A. Pavlov, N. I. Noskova, andR. I. Kuznetsov,Fiz. metal. metalloved. 24 (1967) 947.

    Google Scholar 

  25. P. C. J. Gallagher,Met. Trans., to be published.

  26. J. Friedel, “Dislocations” (Pergamon Press, London, 1964) pp. 121, 221.

    Google Scholar 

  27. G. Saada,Acta Met. 8 (1960) 200; also in “Electron Microscopy and Strength of Crystals” (Wiley, New York, 1963) p. 651.

    Google Scholar 

  28. N. Thompson,Proc. Phys. Soc. B66 (1953) 481.

    Google Scholar 

  29. S. Amelinckx, in “Dislocations and Mechanical Properties of Crystals” (Wiley, New York, 1957) p. 3.

    Google Scholar 

  30. W. M. Lomer andA. H. Cottrell,Phil. Mag. 46 (1955) 711.

    Google Scholar 

  31. J. P. Hirth,J. Appl. Phys. 32 (1961) 700.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prasad, Y.V.R.K., Sastry, D.H. & Vasu, K.I. Effect of stacking-fault energy on thermal activation of attractive junctions in change-in-stress creep of FCC metals. J Mater Sci 5, 495–506 (1970). https://doi.org/10.1007/BF00556037

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00556037

Keywords

Navigation