Skip to main content
Log in

Loss of entanglement density during crazing

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The formation of fibril surface area during craze growth requires a loss of entangled strand density in the fibrils themselves. To demonstrate the decrease in entangled chain density, thin films of polystyrene are bonded to soft copper grids and strained in tension. This procedure produces crazed specimens in which the craze fibrils can be characterized by a well-defined draw ratio,λ 0. The films are then exposed to electron irradiation. This produces chemical crosslinks between the molecules, thus forming a crosslinked network. Subsequent heating of the film aboveT g results in the entanglement network trying to retract toλ=1. The crosslink network, however, tries to maintain theλ. of the craze fibrils atλ 0. The craze fibrils thus retract to Ferry's “state of ease”,λ S, where the tension of the entanglement network is balanced by the compression of the crosslink network. Measurements ofλ s in crazes crosslinked and then healed confirm that a 25 to 50% loss of entanglement density in craze fibrils occurs, in agreement with theoretical predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. P. Beahan, M. Bevis andD. Hull,Phil. Mag. 24 (1971) 1267.

    Google Scholar 

  2. S. Rabinowitz andP. Beardmore,CRC Revs. Macromol. Sci. 1 (1972) 1.

    Google Scholar 

  3. R. P. Kambour,J. Polym. Sci. Macromol. Rev. 7 (1973) 1.

    Google Scholar 

  4. T. E. Brady andG. S. Y. Yeh,J. Mater. Sci. 8 (1973) 1083.

    Google Scholar 

  5. P. Beahan, M. Bevis andD. Hull,ibid. 8 (1974) 162.

    Google Scholar 

  6. S. T. Wellinghoff andE. Baer,J. Macromol. Sci. B11 (1975) 367.

    Google Scholar 

  7. P. Beahan, M. Bevis andD. Hull,Proc. R. Soc. A343 (1975) 525.

    Google Scholar 

  8. D. L. G. Lainchbury andM. Bevis,J. Mater. Sci. 11 (1976) 222.

    Google Scholar 

  9. B. D. Lauterwasser andE. J. Kramer,Phil. Mag. 39A (1979) 469.

    Google Scholar 

  10. A. S. Argon, R. D. Andrews, J. A. Godrick andW. Witney,J. Appl. Phys. 39 (1968) 1899.

    Google Scholar 

  11. P. B. Bowden andS. Raha,Phil. Mag. 22 (1970) 463.

    Google Scholar 

  12. E. J. Kramer,J. Macromol. Sci. B10 (1974) 191.

    Google Scholar 

  13. G. A. Adam, A. Cross andR. N. Haward,J. Mater. Sci. 10 (1975) 1582.

    Google Scholar 

  14. J. B. C. Wu andJ. C. M. Li,ibid. 11 (1976) 434.

    Google Scholar 

  15. Idem, ibid. 11 (1976) 445.

    Google Scholar 

  16. S. T. Wellinghoff andE. Baer,J. Appl. Polym. Sci. 22 (1978) 2025.

    Google Scholar 

  17. C. C. Chau andJ. C. M. Li,J. Mater. Sci. 14 (1979) 1593.

    Google Scholar 

  18. Idem, ibid. 14 (1979) 2172.

    Google Scholar 

  19. N. J. Mills,Eng. Frac. Mech. 6 (1974) 537.

    Google Scholar 

  20. I. Narisawa, M. Ishikawa andH. Ogawa,Polymer J. 8 (1976) 181.

    Google Scholar 

  21. M. Ishikawa, I. Narisawa andH. Ogawa,ibid. 8 (1976) 391.

    Google Scholar 

  22. A. M. Donald andE. J. Kramer,J. Mater. Sci. 16 (1981) 2967.

    Google Scholar 

  23. Idem, ibid. 16 (1981) 2977.

    Google Scholar 

  24. Idem. 23 (1982) 1183.

    Google Scholar 

  25. Idem, J. Polym. Sci., Polym. Phys. Ed. 20 (1982) 899.

    Google Scholar 

  26. C. S. Henkee andE. J. Kramer,ibid. 22 (1984) 721.

    Google Scholar 

  27. A. M. Donald, E. J. Kramer andR. A. Bubeck,ibid. 20 (1982) 1129.

    Google Scholar 

  28. A. M. Donald andE. J. Kramer,Polymer 23 (1982) 461.

    Google Scholar 

  29. J. D. Ferry, in “Viscoelastic Properties of Polymers”, 3rd Edn, (Wiley, New York, 1980) p. 366.

    Google Scholar 

  30. W. W. Graessley,Adv. Polym. Sci. 16 (1974) 1.

    Google Scholar 

  31. S. Onogi, T. Masuda andK. Kitagawa,Macromol. 3 (1970) 111.

    Google Scholar 

  32. P. D. DeGennes,J. Chem. Phys. 55 (1971) 572.

    Google Scholar 

  33. M. Doi andS. F. Edwards,J. Chem. Soc., Faraday Trans. 2 74 (1978) 918.

    Google Scholar 

  34. Idem, ibid. 74 (1978) 1789.

    Google Scholar 

  35. Idem, ibid. 74 (1978) 1802.

    Google Scholar 

  36. E. J. Kramer,Adv. Polym. Sci. 52/53 (1983) 1.

    Google Scholar 

  37. Idem, Polym. Eng. Sci. 24 (1984) 761.

    Google Scholar 

  38. C. C. Kuo, S. L. Phoenix andE. J. Kramer,J. Mater. Sci. Lett. 4 (1985) 459.

    Google Scholar 

  39. J. D. Ferry,Polymer 20 (1979) 1343.

    Google Scholar 

  40. N. R. Langley,Macromol. 1 (1968) 348.

    Google Scholar 

  41. O. Kramer, R. L. Carpenter, V. Ty andJ. D. Ferry,ibid. 7 (1974) 79.

    Google Scholar 

  42. O. Kramer andJ. D. Ferry,ibid. 8 (1975) 87.

    Google Scholar 

  43. R. L. Carpenter, O. Kramer andJ. D. Ferry,ibid. 10 (1977) 117.

    Google Scholar 

  44. Idem, J. Appl. Polym. Sci. 22 (1978) 335.

    Google Scholar 

  45. R. L. Carpenter, H. C. Kan andJ. D. Ferry,Polym. Eng. Sci. 19 (1979) 267.

    Google Scholar 

  46. H. C. Kan andJ. D. Ferry,Macromol. 11 (1978) 1049.

    Google Scholar 

  47. H. C. Kan, R. L. Carpenter andJ. D. Ferry,J. Polym. Sci., Polym. Phys. Ed. 17 (1979) 1855.

    Google Scholar 

  48. H. C. Kan andJ. D. Ferry,Macromol. 12 (1979) 494.

    Google Scholar 

  49. L. R. G. Treloar,Rep. Prog. Phys. 36 (1973) 755.

    Google Scholar 

  50. D. S. Pearson, B. J. Skutnik andG. G. A. Bohm,J. Polym. Sci., Polym. Phys. Ed. 12 (1974) 925.

    Google Scholar 

  51. J. D. Ferry andH. C. Kan,Rubber Chem. Technol. 51 (1978) 731.

    Google Scholar 

  52. O. Kramer,Polymer 20 (1979) 1336.

    Google Scholar 

  53. D. E. Roberts andL. Mandelkern,J. Amer. Chem. Soc. 80 (1958) 1289.

    Google Scholar 

  54. R. Kitamaru andL. Mandelkern,Polym. Lett. 2 (1964) 1019.

    Google Scholar 

  55. A. Charlesby, D. Libby andM. G. Omerod,Proc. R. Soc. A262 (1961) 207.

    Google Scholar 

  56. H. R. Brown,J. Mater. Sci. 14 (1979) 237.

    Google Scholar 

  57. J. P. Berry, J. Scanlan andW. F. Watson,Trans. Faraday Soc. 52 (1956) 1137.

    Google Scholar 

  58. A. Greene, K. J. Smith andA. Ciferri,ibid. 61 (1965) 2772.

    Google Scholar 

  59. C. S. Henkee, PhD thesis, Cornell University (1985).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Henkee, C.S., Kramer, E.J. Loss of entanglement density during crazing. J Mater Sci 21, 1398–1404 (1986). https://doi.org/10.1007/BF00553279

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00553279

Keywords

Navigation