Skip to main content
Log in

Trehalose in yeast, stress protectant rather than reserve carbohydrate

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Trehalose and glycogen are generally regarded as the two main reserve carbohydrates in yeast. However, several lines of evidence suggest that trehalose does not primarily function as a reserve but as a highly efficient protecting agent to maintain strutural integrity of the cytoplasm under environmental stress conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • App, H. and Holzer, H. (1989) Purification and characterization of neutral trehalase from the yeast ABYS1 mutant. J. Biol. Chem. 264, 17583–17588.

    Google Scholar 

  • Attfield, P.V. (1987) Trehalose accumulates in Saccharomyces cerevisiae during exposure to agents that induce heat shock response. FEBS Lett. 225, 259–263.

    Google Scholar 

  • Avigad, G. (1982) Sucrose and other disaccharides. In Encyclopedia Plant Physiol. New Series, Vol. 13A, Plant Carbohydrates I, F.A. Loewus and W. Tanner, eds. (Heidelberg: Springer), 217–347.

    Google Scholar 

  • Barton, J.K., denHollander, A., Hopfield, J.J. and Shulman, R.G. (1982) 13C nuclear magnetic resonance study of trehalose mobilization in yeast spores. J. Bacteriol. 151, 177–185.

    Google Scholar 

  • Carpenter, J.F. and Crowe, J.H. (1988a) The mechanism of cryoprotection of proteins by solutes. Cryobiology 25, 244–255.

    Google Scholar 

  • Carpenter, J.F. and Crowe, J.H. (1988b) Modes of stabilization of a protein by organic solutes during desiccation. Cryobiology 25, 459–470.

    Google Scholar 

  • Chandrasekhar, I. and Garber, B.P. (1988) Stabilization of the biomembrane by small molecules: Interaction of trehalose with the phospholipid bilayer. J. Biomolec. Struct. Dynam. 5, 1163–1171.

    Google Scholar 

  • Clegg, J.S. (1986) The physical properties and metabolic status of Artemia cysts at low water contents; the “water replacement hypothesis”. See: Leopold (1986), 169–187.

  • Crowe, J.H., Crowe, L.M. and Chapman, D. (1984). Preservation of membranes in anhydrobiotic organisms: the role of trehalose. Science 223, 701–703.

    Google Scholar 

  • Crowe, J.H., Crowe, L.M., Carpenter, J.F., Rudolph, A.S., Wistrom, C.A., Spargo, B.J. and Anchordoguy, T.J. (1988) Interactions of sugars with membranes. Biochim. Biophys. Acta 947, 367–384.

    Google Scholar 

  • Elbein, A.D. (1974) The metabolism of α,α-trehalose. Adv. Carbohyd. Chem. Biochem. 30, 227–256.

    Google Scholar 

  • Franks, F., Mathias, S.F. and Hatley, R.H.M. (1990). Water, temperature and life. Phil. Trans. R. Soc. Lond. B 326, 517–533.

    Google Scholar 

  • Gadd, G.M., Chalmers, K. and Reed, R.H. (1987). The role of trehalose in dehydration resistance of Saccharomyces cerevisiae. FEMS Microbiol. Lett. 48, 249–254.

    Google Scholar 

  • Grba, S., Oura, E. and Soumalainen, H. (1975) On the formation of glycogen and trehalose in baker's yeast. Eur. J. Appl. Microbiol. 2, 29–37.

    Google Scholar 

  • Hincha, D.K. (1989) Low concentrations of trehalose protect isolated thylakoids against mechanical freeze-thaw damage. Biochim. Biophys. Acta 987, 231–234.

    Google Scholar 

  • Hino, A., Mihara, K., Nakashima, K. and Takano, H. (1990) Trehalose levels and survival ratio of freeze-tolerant versus freeze-sensitive yeasts. Appl. Environm. Microbiol. 56, 1386–1391.

    Google Scholar 

  • Hoekstra, F.A., Crowe, L.M. and Crowe, J.H. (1989) Differential desiccation sensitivity of corn and Pennisetum pollen linked to their sucrose contents. Plant Cell Environm. 12, 93–91.

    Google Scholar 

  • Hottiger, T. (1988) Trehalose in Bäckerhefe-Speicher-oder Schutzstoff? Dissertation, Universität Basel.

  • Hottiger, T., Boller, T. and Wiemken, A. (1987a) Rapid changes of heat and desiccation tolerance correlated with changes of trehalose content in Saccharomyces cerevisiae cells subjected to temperature shifts. FEBS Lett. 220, 113–115.

    Google Scholar 

  • Hottiger, T., Schmutz, P. and Wiemken, A. (1987b) Heat-induced accumulation and futile cycling of trehalose in Saccharomyces cerevisiae. J. Bacteriol. 169, 5518–5522.

    Google Scholar 

  • Hottiger, T., Boller, T. and Wiemken, A. (1989) Correlation of trehalose content and heat resistance in yeast mutants altered in the RAS/adenylate cyclase pathway: is trehalose a thermoprotectant? FEBS Lett. 255, 431–434.

    Google Scholar 

  • Jennings, D.H. (1984) Water flow through mycelia. In The ecology and physiology of the fungal mycelium, D.H. Jennings and A.D.M. Rayner, eds. (Cambridge: Cambridge University Press), 143–164.

    Google Scholar 

  • Kane, S.M. and Roth, R. (1974) Carbohydrate metabolism during ascospore development in yeast. J. Bacteriol. 118, 8–14.

    Google Scholar 

  • Keller, F., Schellenberg, M. and Wiemken, A. (1982) Localization of trehalase in vacuoles and of trehalose in the cytosol of yeast (Saccharomyces cerevisiae). Arch. Microbiol. 131, 298–301.

    Google Scholar 

  • Koster, K.L. and Leopold, A.C. (1988) Sugars and desiccation tolerance in seeds. Plant Physiol. 88, 829–832.

    Google Scholar 

  • Lee, C.W.B., Gupta, S.K.D., Mattai, J., Shipley, G.G., Abdel-Mageed, O.H., Makriyannis, A., and Griffin, R.G. (1989) Characterization of the L phase in trehalose-stabilized dry membranes by solid-state NMR and X-ray diffraction. Biochemistry 28, 5000–5009.

    Google Scholar 

  • Leopold, A.C., ed. (1986) Membranes, metabolism and dry organisms. Ithaca: Comstock Publishing Associates.

    Google Scholar 

  • Lillie, S.H. and Pringle, J.R. (1980) Reserve carbohydrate metabolism in Saccharomyces cerevisiae: Responses to nutrient limitation. J. Bacteriol. 143, 1384–1394.

    Google Scholar 

  • Londesborough, J. and Varimo, K. (1984) Characterization of two trehalases in baker's yeast. Biochem. J. 219, 511–518.

    Google Scholar 

  • Mackenzie, K.F., Singh, K.K. and Brown, A.D. (1988) Water stress plating hypersensitivity of yeast: protective role of trehalose in Saccharomyces cerevisiae. J. Gen. Microbiol. 134, 1661–1666.

    Google Scholar 

  • Marino, C., Curto, M., Bruno, R. and Rinaudo, M.T. (1989) Trehalose synthase and trehalose behaviour in yeast cells in anhydrobiosis and hydrobiosis. Int. J. Biochem. 21, 1369–1375.

    Google Scholar 

  • Mittenbühler, K. and Holzer, H. (1988) Purification and characterization of acid trehalase from the yeast suc2 mutant. J. Biol. Chem. 263, 8537–8543.

    Google Scholar 

  • Panek, A.C., Bernardes, E. and Panek, A.D. (1986) Does trehalose play a role in yeast cells under stress? See: Leopold (1986), 123–142.

  • Panek, A.C., deAraujo, P.S., Neto, V.M. and Panek, A.D. (1987) Regulation of the trehalose-6-phosphate synthase complex in Saccharomyces. Curr. Genet. 11, 459–465.

    Google Scholar 

  • Schimz, K.L. and Overhoff, B. (1987) Investigations of the influence of carbon starvation on the carbohydrate storage compounds (trehalose, glycogen), viability, adenylate pool, and adenylate energy charge in Cellulomonas sp. (DSM20108). FEMS Microbiol. Lett. 40, 333–337.

    Google Scholar 

  • Schmutz, P. (1988) Trehalose und Trehalase in Hefe. Dissertation, ETH Zürich, Nr. 8735.

  • Thevelein, J.M. (1984a) Regulation of trehalose mobilization in fungi. Microbiol. Rev. 48, 42–59.

    Google Scholar 

  • Thevelein, J.M. (1984b) Activation of trehalase by heat shock in yeast ascospores: Correlation with total cellular cyclic-AMP content. Curr. Microbiol. 10, 159–164.

    Google Scholar 

  • Thevelein, J.M. (1988) Regulation of trehalase activity by phosphorylation-dephosphorylation during developmental transitions in fungi. Exp. Mycol. 12, 1–12.

    Google Scholar 

  • Tschirch, A. (1912). Handbuch der Pharmakognosie, Bd II (Stuttgart: Julius Weise Hofbuch-handlung) 147 ff.

    Google Scholar 

  • Tsvetkov, T.D., Tsonev, L.I., Tsvetkova, N.M., Koynova, R.D. and Tenchov, B.G. (1989) Effect of trehalose on the phase properties of hydrated and lyophilized dipalmitoylphosphatidylcholine multilayers. Cryobiology 26, 162–169.

    Google Scholar 

  • Vandercammen, A., François, J. and Hers, H.G. (1989) Characterisation of trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase of Saccharomyces cerevisiae. Eur. J. Biochem. 182, 613–620.

    Google Scholar 

  • VanLaere, A. (1989) Trehalose, reserve and/or stress metabolite? FEMS Microbiol. Rev. 63, 201–210.

    Google Scholar 

  • Westenberg, B., Boller, T. and Wiemken, A. (1989) Lack of arginine- and polyphosphate-storage pools in a vacuole-deficient mutant (end1) of Saccharomyces cerevisiae. FEBS Lett. 254, 133–136.

    Google Scholar 

  • Wiemken, A. and Schellenberg, M. (1982) Does a cyclic-AMP dependent phosphorylation initiate the transfer of trehalase from the cytosol into the vacuoles in Saccharomyces cerevisiae? FEBS Lett. 150, 329–331.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wiemken, A. Trehalose in yeast, stress protectant rather than reserve carbohydrate. Antonie van Leeuwenhoek 58, 209–217 (1990). https://doi.org/10.1007/BF00548935

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00548935

Keywords

Navigation