Skip to main content
Log in

Mapping of the calcium-sensing receptor gene (CASR) to human Chromosome 3q13.3-21 by fluorescence in situ hybridization, and localization to rat Chromosome 11 and mouse Chromosome 16

  • Original Contributions
  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

The calcium-sensing receptor (CASR), a member of the G-protein coupled receptor family, is expressed in both parathyroid and kidney, and aids these organs in sensing extracellular calcium levels. Inactivating mutations in the CASR gene have been described in familial hypocalciuric hypercalcemia (FHH) and neonatal severe hyperparathyroidism (NSHPT). Activating mutations in the CASR gene have been described in autosomal dominant hypoparathyroidism and familial hypocalcemia. The human CASR gene was mapped to Chromosome (Chr) 3q13.3-21 by fluorescence in situ hybridization (FISH). By somatic cell hybrid analysis, the gene was localized to human Chr 3 (hybridization to other chromosomes was not observed) and rat Chr 11. By interspecific backcross analysis, the Casr gene segregated with D16Mit4 on mouse Chr 16. These findings extend our knowledge of the synteny conservation of human Chr 3, rat Chr 11, and mouse Chr 16.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bishop, D.T. (1985). The information content of phase-known matings for ordering genetic loci. Genet. Epidemiol. 2, 349–361.

    Google Scholar 

  • Boyle, A.L., Feltquite, D.M., Dracopoli, N.C., Housman, D.E., Ward, D.C. (1992). Rapid physical mapping of cloned DNA on banded mouse chromosomes by fluorescence in situ hybridization. Genomics 12, 106–115.

    Google Scholar 

  • Brown, E.M., Gamba, G., Riccardi, D., Lombardi, M., Butters, R., Kifor, O., Sun, A., Hediger, M.A., Lytton, J., Hebert, S.C. (1993). Cloning and characterization of an extracellular Ca2+-sensing receptor from bovine parathyroid. Nature 366, 575–580.

    Google Scholar 

  • Chou, Y.-H.W., Brown, E.M., Levi, T., Crowe, G., Atkinson, A.B., Arnquist, H.J., Toss, G., Fuleihan, G.E.-H., Seidman, J.G., Seidman, C.E. (1992). The gene responsible for familial hypocalciuric hypercalcemia maps to chromosome 3q in four unrelated families. Nature Genet. 1, 295–299.

    Google Scholar 

  • Finegold, D.N., Armitage, M.M., Galiani, M., Matise, T.C., Pandian, M.R., Perry, Y.M., Deka, R., Ferrell, R.E. (1994). Preliminary localization of a gene for autosomal dominant hypoparathyroidism to chromosome 3q13. Pediatr. Res. 36, 414–417.

    Google Scholar 

  • Garrett, J.E., Capuano, I.V., Hammerland, L.G., Hung, B.C.P., Brown, E.M., Hebert, S.C., Nemeth, E.F., Fuller, F. (1995). Molecular cloning and functional expression of human parathyroid calcium receptor cDNAs. J. Biol. Chem. 270, 12919–12925.

    Google Scholar 

  • Green, E.L. (1981). Linkage, recombination and mapping. In Genetics and Probability in Animal Breeding Experiments, E. Green, ed. (New York: Macmillan), pp. 77–113.

    Google Scholar 

  • Heath, H., III., Jackson, C.E., Otterud, B., Leppert, M.F. (1993). Genetic linkage analysis in familial benign (hypocalciuric) hypercalcemia: evidence for locus heterogeneity. Am. J. Hum. Genet. 53, 193–200.

    Google Scholar 

  • Heath, H., III, Odelberg, S., Brown, D., Hill, V.M., Robertson, M., Jackson, C.E., Teh, B.T., Hayward, N., et al. (1994). Sequence analysis of the parathyroid cell calcium receptor (CaR) gene in familial benign hypercalcemia (FBH): a multiplicity of mutations? J. Bone Miner. Res. 9(Suppl 1). C426.

  • Heng, H., Tsui, L.-C. (1993). Modes of DAP1 banding and simultaneous in situ hybridization. Chromosoma 102, 325–332.

    Google Scholar 

  • Hino, O., Testa, J.R., Buetow, K.H., Taguchi, T., Zhou, J.-Y., Bremer, M., Bruzel, A., Yeung, R., Levan, G., Levan, K., Knudson, A.G., Tartof, K.D. (1993). Universal mapping probes and the origin of human chromosome 3. Proc. Natl Acad. Sci. USA 90, 730–734.

    Google Scholar 

  • Janicic, N., Pausova, Z., Cole, D.E.C., Hendy, G.N. (1995). Insertion of an Alu sequence in the Ca2+-sensing receptor gene in familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism. Am. J. Hum. Genet. 56, 880–886.

    Google Scholar 

  • Levan, G., Szpirer, J., Szpirer, C., Klinga, K., Hanson, H., and Islam, M.Q. (1991). The gene map of the Norway rat (Rattus norvegicus) and comparative mapping with mouse and man. Genomics 10, 699–718.

    Google Scholar 

  • Lichter, P., Tang, C.J., Call, K., Hermanson, G., Evans, G.A., Houseman, D., Ward, D. (1990). High-resolution mapping of human chromosome 11 by in situ hybridization with cosmid clones. Science 247, 64–69.

    Google Scholar 

  • Nadeau, J.H., Davisson, M.T., Doolittle, D.P., Grant, P., Hillyard, A.L., Kosowsky, M., and Roderick, T.H. (1991). Comparative map for mice and humans. Mamm. Genome 1, S461-S515.

    Google Scholar 

  • Nakanishi, S. (1992). Molecular diversity of glutamate receptors and implications for brain function. Science 258, 597–603.

    Google Scholar 

  • Pausova, Z., Bourdon, J., Clayton, D., Mattei, M.G., Seldin, M.F., Janicic, N., Rivière, M., Szpirer, J., Levan, G., Szpirer, C., Goltzman, D., Hendy, G.N. (1994). Cloning of a parathyroid hormone/parathyroid hormonerelated peptide (PTHRP) cDNA from a rat osteosarcoma (UMR 106) cell line: chromosomal assignment of the gene in the human, mouse, and rat genomes. Genomics 20, 20–26.

    Google Scholar 

  • Pearce, S.H.S., Trump, D., Woodling, C., Besser, G.M., Chew, S.L., Heath, D.A., Hughes, I.A., Thakker, R.V. (1994). Four novel mutations in the calcium-sensing receptor gene associated with familial benign (hypocalciuric) hypercalceamia. J. Bone Miner. Res. 96(Suppl 1), 99.

    Google Scholar 

  • Perry, Y.M., Finegold, D.N., Armitage, M.M., Ferrell, R.E. (1994). Missense mutation in the Ca-sensing receptor gene causes familial autosomal dominant hypoparathyroidism. Am. J. Hum. Genet. Suppl. 55, 79.

    Google Scholar 

  • Pollak, M.R., Brown, E.M., Chou, Y-H.W., Herbert, S.C., Marx, S.J., Steinmann, B., Levi, T., Seidman, C.E., Seidman, J.G. (1993). Mutations in the human Ca2+-sensing receptor gene cause familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism. Cell 75, 1297–1303.

    Google Scholar 

  • Pollak, M.R., Brown, E.M., Estep, H.L., McLaine, P.N., Kifor, O., Park, J., Herbert, S.C., Seidman, C.E., Seidman, J.G. (1994). Autosomal dominant hypocalcemia caused by a Ca2+-sensing receptor gene mutation. Nature Genet. 8, 303–307.

    Google Scholar 

  • Reeves, R.H., Citron, M.P. (1994) Mouse Chromosome 16. Mamm. Genome 5 (Suppl.), S217-S228.

    Google Scholar 

  • Reeves, R.H., Crowley, M.R., Moseley, W.S., Seldin, M.F. (1991). Comparison of interspecific to intersubspecific backcrosses demonstrates species and sex differences in recombination frequency on mouse Chromosome 16. Mamm. Genome 1, 158–164.

    Google Scholar 

  • Riccardi, D.R., Park, J., Lee, W-S., Gamba, G., Brown, E.M., Herbert, S.C. (1995). Cloning and functional expression of a rat kidney extracellular calcium/polyvalent cation-sensing receptor. Proc. Natl. Acad. Sci USA 92, 131–135.

    Google Scholar 

  • Ruat, M., Molliver, M.E., Snowman, A.M., Snyder, S.H. (1995). Calcium sensing receptor: molecular cloning in rat and localization to nerve terminals. Proc. Natl. Acad. Sci. USA 92, 3161–3165.

    Google Scholar 

  • Saunders, A.M., Seldin, M.F. (1990). A molecular genetic linkage map of mouse chromosome 7. Genomics 8, 524–535.

    Google Scholar 

  • Seldin, M.F., Morse, H.C., Reeves, J.P., Scribner, J.P., LeBoeuf, R.C., Steinberg, A.D. (1988) Genetic analysis of autoimmune gld mice. I. Identification of a restriction fragment length polymorphism linked to the gld mutation within a conserved linkage group. J. Exp. Med. 167, 688–693.

    Google Scholar 

  • Southern, E. (1975). Detection of specific sequences among DNA gragments separated by gel electrophoresis. J. Mol. Biol. 98, 503–517.

    Google Scholar 

  • Takada, F., Seki, N., Matsuda, Y-I., Takayama, Y., Kawakami, M. (1995). Localization of the genes for the 100-kDa complement activating components of Ra-reactive factor (CRARF and Crarf) to human 3q27-q28 and mouse 16B2-B3. Genomics 25, 757–759.

    Google Scholar 

  • Trump, D., Whyte, M.P., Wooding, C., Pang, J.T., Pearce, S.H.S., Kocher, D.B., Thakker, R.V. (1995). Linkage studies in a kindred from Oklahoma, with familial benign (hypocalciuric) hypercalcaemia (FBH) and development elevations in serum parathyroid hormone levels, indicate a third locus for FBH. Hum. Genet. 96, 183–187.

    Google Scholar 

  • Watson, M.L., Seldin, M.F. (1994). Application of mouse crosses towards defining the genetics of disease phenotypes. Methods Mol. Genet. 5, 369–387.

    Google Scholar 

  • Watson, M.L., D'Eustachio, P., Mock, B.A., Steinberg, A.D., Morse, H.C. III, Oakey, R.J., Howard, T.A., Rochelle, J.M., Seldin, M.F. (1992). A linkage map of mouse chromosome 1 using an interspecific cross segregating for the gld autoimmunity mutation. Mamm. Genome 2, 158–171.

    Google Scholar 

  • Yamada, J., Kuramoto, T., Serikawa, T. (1994). A rat genetic linkage map and comparative maps for mouse or human homologous rat genes. Mamm. Genome 5, 63–83.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Janicic, N., Soliman, E., Pausova, Z. et al. Mapping of the calcium-sensing receptor gene (CASR) to human Chromosome 3q13.3-21 by fluorescence in situ hybridization, and localization to rat Chromosome 11 and mouse Chromosome 16. Mammalian Genome 6, 798–801 (1995). https://doi.org/10.1007/BF00539007

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00539007

Keywords

Navigation