Skip to main content
Log in

Chloroplast ribosomal DNA organization in the chromophytic alga Olisthodiscus luteus

  • Published:
Current Genetics Aims and scope Submit manuscript

Summary

There are almost no data describing chloroplast genome organization in chromophytic (chlorophyll a/c) plants. In this study chloroplast ribosomal operon placement and gene organization has been determined for the golden-brown alga Olisthodiscus luteus. Ribosomal RNA genes are located on the chloroplast DNA inverted repeat structure. Nucleotide sequence analysis, demonstrated that in contrast to the larger spacer regions in land plants, the 16S–23S rDNA spacer of O. luteus is only 265 by in length. This spacer contains tRNAIle and tRNAAla genes which lack introns and are separated by only 3 bp. The sequences of the tRNA genes and 16S and 23S rDNA termini flanking the spacer were examined to determine homology between O. luteus, chlorophytic plant chloroplast DNA, and prokaryotes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aldrich J, Cattolico RA (1981) Plant Physiol 68:641–647

    Google Scholar 

  • Banks HP (1975) BioScience 25:730–737

    Google Scholar 

  • Birnboim HC, Doly J (1979) Nucleic Acids Res 7:1513–1517

    Google Scholar 

  • Bogorad L, Mets LJ, Mullinix KP, Smith HJ, Strain GC (1973) Biochem Soc Symp 38:17–41

    Google Scholar 

  • Bogorad L, Gubbins EJ, Krebbers E, Larrinua IM, Mulligan BJ, Muskavitch KMT, Orr EA, Rodermel SR, Schantz R, Steinmetz AA, De Vos G, Ye YK (1983) Methods Enzymol 97:524–554

    Google Scholar 

  • Bohnert HJ, Crouse EJ, Schmitt JM (1982) In: Pirson A, Zimmermann MH (eds) Encyclopedia of plant physiology, vol 14B. Springer, Berlin Heidelberg New York, pp 475–530

    Google Scholar 

  • Brosius J, Palmer ML, Kennedy PJ, Noller HF (1978) Proc Natl Acad Sci USA 75:4801–4805

    Google Scholar 

  • Cattolico RA (1978) Plant Physiol 62:558–562

    Google Scholar 

  • Cattolico RA (1986) Trends Ecol Evol 1:64–67

    Google Scholar 

  • Cavalier-Smith T (1982) Biol J Linn Soc 17:289–306

    Google Scholar 

  • Coleman AW (1985) J Phycol 21:1–16

    Google Scholar 

  • Crouse EJ, Schmitt JM, Bohnert HJ (1985) Plant Mol Biol Rep 3:4389

    Google Scholar 

  • Dale RMK, McClure BA, Houchinsx JP (1985) Plasmid 13:31–40

    Google Scholar 

  • Douglas SE, Doolittle WF (1984) Nucleic Acids Res 12:3373–3386

    Google Scholar 

  • Dron M, Rahire M, Rochaix JD (1982) Nucleic Acids Res 10:7609–7620

    Google Scholar 

  • Fox GE, Stackebrandt E, Hespell RB, Gibson J, Maniloff J, Dyer TA, Wolfe RS, Balch WE, Tanner RS, Magrum LJ, Zablen LB, Blakemore R, Gupta R, Bonen L, Lewis BJ, Stahl DA, Luehrsen KR, Chen KN, Woese CR (1980) Science 209:457–463

    Google Scholar 

  • Gibbs SP (1981) Ann NY Acad Sci 361:193–207

    Google Scholar 

  • Gillott MA, Gibbs SP (1980) J Phycol 16:558–568

    Google Scholar 

  • Graf L, Kössel H, Stutz E (1980) Nature 286:908–910

    Google Scholar 

  • Gray MW, Doolittle WF (1982) Microbiol Rev 46:1–42

    Google Scholar 

  • Gray MW, Sankoff D, Cedergren RJ (1984) Nucleic Acids Res 12:5837–5852

    Google Scholar 

  • Grunstein M, Hogness D (1975) Proc Natl Acad Sci USA 72:3961–3965

    Google Scholar 

  • Hallick RB, Hollingsworth MJ, Nickoloff JA (1984) Plant Mol Biol 3:169–175

    Google Scholar 

  • Hayward GS (1972) Virology 49:342–344

    Google Scholar 

  • Helling RB, El-Gewely MR, Lomax MI, Baumgartner JE, Schwartzbach SD, Barnett WE (1979) Mol Gen Genet 174:1–10

    Google Scholar 

  • Holley RW, Apgar J, Everett GA, Madison JT, Marquisee M, Merrill SH, Penswick JR, Zamir A (1965) Science 147:1462–1465

    Google Scholar 

  • Janssen I, Mucke H, Löffelhardt W, Bohnert HJ (1987) Plant Mol Biol 9:479–484

    Google Scholar 

  • Kuhsel M, Kowallik KV (1987) Mol Gen Genet 207:361–368

    Google Scholar 

  • Li N, Cattolico RA (1987) Mol Gen Genet 209:343–351

    Google Scholar 

  • Loughney K, Lund E, Dahlberg E (1982) Nucleic Acids Res 10:1607–1624

    Google Scholar 

  • Ludwig M, Gibbs SP (1985) Protoplasma 127:9–20

    Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning, a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • Markowics Y, Mache R, Loiseaux-De Goër S (1988) Plant Mol Biol 10:465–469

    Google Scholar 

  • McIntosh L, Cattolico RA (1978) Anal Biochem 91:600–612

    Google Scholar 

  • Messing J, Vieira J (1982) Gene 19:269–276

    Google Scholar 

  • Morrall S, Greenwood AD (1982) J Cell Sci 54:311–328

    Google Scholar 

  • Noller HF (1984) Ann Rev Biochem 53:119–162

    Google Scholar 

  • Orozco EM Jr, Rushlow KE, Dodd JR, Hallick RB (1980) J Biol Chem 255:10997–11003

    Google Scholar 

  • Palmer JD (1985a) In: MacIntyre RJ (ed) Monographs in evolutionary biology: molecular evolutionary genetics. Plenum Publishing, New York, pp 131–240

    Google Scholar 

  • Palmer JD (1985b) Ann Rev Genet 19:325–354

    Google Scholar 

  • Palmer JD, Thompson WF (1982) Cell 29:537–550

    Google Scholar 

  • Pickett-Heaps JD (1975) Green algae structure, reproduction and evolution in selected genera. Sinauer Associates Inc, Massachusetts

    Google Scholar 

  • Raven PH, (1970) Science 169:641–646

    Google Scholar 

  • Reith ME, Cattolico RA (1986) Proc Natl Acad Sci USA 88:8599–8603

    Google Scholar 

  • Rigby PWJ, Diekmann M, Rhodes C, Berg P (1977) J Mol Biol 113:237–251

    Google Scholar 

  • Rochaix JD, Darlix JL (1982) J Mol Biol 159:383–395

    Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) Proc Natl Acad Sci USA 81:493–497

    Google Scholar 

  • Schneider M, Rochaix JD (1986) Plant Mol Biol 6:265–270

    Google Scholar 

  • Southern EM (1975) J Mol Biol 98:503–517

    Google Scholar 

  • Takaiwa F, Sugiura M (1982a) Eur J Biochem 124:13–19

    Google Scholar 

  • Takaiwa F, Sugiura M (1982b) Nucleic Acids Res 10:2665–2676

    Google Scholar 

  • Taylor FIR (1979) Proc R Soc Lond B 204:267–286

    Google Scholar 

  • Tohdoh N, Sugiura M (1982) Gene 17:213–218

    Google Scholar 

  • Tomas RN, Cox ER (1973) J Phycol 9:304–323

    Google Scholar 

  • Tomioko N, Sugiura M (1983) Mol Gen Genet 191:46–50

    Google Scholar 

  • Vieira J, Messing J (1982) Gene 19:259–268

    Google Scholar 

  • Whatley JM, Whatley FR (1981) New Phytol 87:233–247

    Google Scholar 

  • Whitfeld PR, Bottomley W (1983) Ann Rev Plant Physiol 34:279–310

    Google Scholar 

  • Williamson SE, Doolittle WF (1983) Nucleic Acids Res 11:225–235

    Google Scholar 

  • Wurtz EA, Buetow DE (1981) Curr Genet 3:181–187

    Google Scholar 

  • Yamada T, Shimaji M (1986) Nucleic Acids Res 14:3827–3839

    Google Scholar 

  • Yamada T, Shimaji M (1987) Curr Genet 11:347–352

    Google Scholar 

  • Young RA, Steitz JA (1978) Proc Natl Acad Sci USA 75:3593–3597

    Google Scholar 

  • Young RA, Macklis R, Steitz JA (1979) J Biol Chem 254:3264–3271

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by an NSF Grant (DEB8210475) to RAC and a PHS NRSA predoctoral fellowship (2T32GM07270) to TPD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Delaney, T.P., Cattolico, R.A. Chloroplast ribosomal DNA organization in the chromophytic alga Olisthodiscus luteus . Curr Genet 15, 221–229 (1989). https://doi.org/10.1007/BF00435509

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00435509

Key words

Navigation