Skip to main content
Log in

Invited review “sol-gel” preparation of high temperature superconducting oxides

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

This review article focuses on the sol-gel preparation of high temperature superconducting oxides wherein different classes of gel technologies were utilized. These involve: 1) the sol-gel route based upon hydrolysis-condensation of metal-alkoxides, 2) the gelation route based upon concentration of aqueous solutions involving metal-chelates, often called as “chelate gel” or “amorphous chelate” route, and 3) the organic polymeric gel route. This paper reviews the current status of these sol-gel processes, and illustrates the underlying chemistry involved in each sol-gel technology. It is demonstrated that the chemical homogeneity of the gel is often disturbed by the differences in the chemistries of the cations. Prior to gelation the starting precursor solution containing various forms of metal-complexes must be chemically modified to overcome this problem. Illustration of a variety of strategies for success in obtaining a homogeneous multicomponent gel with no precipitation is focal point of this review article.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Sakka, H. Kozuka, and H. Zhuang, Mol. Cryst. Liq. Cryst. 184, 359 (1990).

    Google Scholar 

  2. B.G. Bagley, W.E. Quinn, S.A. Khan, P. Barboux, and J.M. Tarascon, J. Non Cryst. Solids 121, 454 (1990).

    Google Scholar 

  3. S. Hirano and T. Hayashi, Thermochimica Acta 174, 169 (1991).

    Google Scholar 

  4. J.M. González-Calbet, Vallet-Regi, and X. Obradors in Studies of High Temperature Superconductors; Advances in Research and Applications, edited by A. Narlikar (Nova Science Pub. New York, 1990) 6 p. 369.

    Google Scholar 

  5. M. Kakihana, M. Yoshimura, H. Mazaki, and H. Yasuoka, Rep. Res. Lab. Eng. Mater., Tokyo Inst. Tech. 17, 63 (1992).

    Google Scholar 

  6. A.C. Vajpei and G.S. Upadhyaya, Key Eng. Mater. 75–76, 43 (1992).

    Google Scholar 

  7. M. Kubecková and V. Matéjec, Ceramics-Silikáty 37, 169 (1993).

    Google Scholar 

  8. C.N.R. Rao, R. Nagarajan, and R. Vijayaraghavan, Supercond. Sci. Technol. 6, 1 (1993).

    Google Scholar 

  9. A. Bourdillon and N.X. Tan Bourdillon in High Temperature Superconductors; Processing and Science, Ch. IV (Academic Press, Inc., San Diego, 1994), p. 108.

    Google Scholar 

  10. W.S. Clabaugh, E.M. Swiggard, and R. Gilchrist, J. Res. Natl. Bur. Std. 56, 289 (1956).

    Google Scholar 

  11. P.P. Phule and S.H. Risbud, J. Mater. Sci. 25, 1169 (1990).

    Google Scholar 

  12. D. Hennings and W. Mayr, J. Solid State Chem 26, 329 (1978).

    Google Scholar 

  13. J.T. Davis and E.K. Rideal in Interfacial Phenomena, (Academic Press, New York, 1963).

    Google Scholar 

  14. I.A. Aksay in Ceramics: Today and Tomorrow, edited by S. Naka, N. Soga, and S. Kume, The Ceramic Society of Japan, 71 (1986).

  15. F.F. Lange, B.I. Davis, and E. Wright, J. Amer. Ceram. Soc. 69, 66 (1986).

    Google Scholar 

  16. Y. Hirata and I.A. Aksay in Ceramic Microstructure 86, Role of Interfaces, edited by J.A. Pask and A.G. Evans (Plenum Press, 1987), p. 611.

  17. L.M. Sheppard, Amer. Ceram. Soc. Bull. 68, 979 (1989).

    Google Scholar 

  18. A.C. Pierre, Ceramic Bulletin 70, 1281 (1991).

    Google Scholar 

  19. Surface and Colloid Chemistry in Advanced Ceranics Processing, edited by R.J. Pugh and L. Bergström, (Marcel Dekker, Inc., New York, 1994).

    Google Scholar 

  20. P. Colomban, Ceramics International 15, 23 (1989).

    Google Scholar 

  21. B.J.J. Zelinski and D.R. Uhlmann, J. Phys. Chem. Solids 42, 1069 (1985).

    Google Scholar 

  22. H. Dislich, J. Non-Cryst. Solids 73, 599 (1985).

    Google Scholar 

  23. D.P. Parlow and B.E. Yoldas, J. Non-Cryst. Solids, 46, 153 (1981).

    Google Scholar 

  24. C.D. Chandler, C. Roger, and M.J. Hampden-Smith, Chem. Rev. 93, 1205 (1993).

    Google Scholar 

  25. D.C. Bradley, Chem. Rev. 89, 1317 (1989).

    Google Scholar 

  26. C.J. Brinker and G.W. Scherer in Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing (Academic Press, Boston, 1990).

    Google Scholar 

  27. L.C. Klein in Sol-Gel Technology for Thin Films, Fibers, Preforms, Electronics and Specially Shapes (Noyes Publications, Park Ridge, 1988).

    Google Scholar 

  28. P. Cousin and R.A. Ross, Mater. Sci. Eng. A 90, 1027 (1990).

    Google Scholar 

  29. L.L. Hench and J.K. West, Chem. Rev. 90, 33 (1990).

    Google Scholar 

  30. W.G.Van der Sluys and A.P. Sattleberger, Chem. Rev. 90, 1027 (1990).

    Google Scholar 

  31. J. Livage, M. Henry, and C. Sanchez, Prog. Solid State Chem. 18, 259 (1988).

    Google Scholar 

  32. D.C. Bradley, R.C. Mehrotra, and D.P. Gaur in Metal Alkoxides (Academic Press, London, 1978).

    Google Scholar 

  33. A.R. West in Solid State Chemistry and Its Applications (Wiley, New York, 1989).

    Google Scholar 

  34. K.G. Caulton and L.G. Hubert-Pfalzgraf, Chem. Rev. 90, 969 (1990).

    Google Scholar 

  35. K.S. Mazdiyasni, Powder Synthesis from Metal Organic Precursors, Ceramics Int. 8, 42 (1982).

    Google Scholar 

  36. B.E. Yoldas, J. Amer. Ceram. Soc. 65, 387 (1977).

    Google Scholar 

  37. S. Sakka and K. Kamiya, Glasses from Metal Alcoholates, J. Non Crystalline Solids 42, 403 (1980).

    Google Scholar 

  38. K.S. Mazdiyasni, C.T. Lynch, and J.S. Smith, Inorg. Chem. 5, 342 (1966).

    Google Scholar 

  39. S. Doeuff, M. Henry, C. Sanchez, and J. Livage, J. Non-Cryst. Solids 89, 206 (1987).

    Google Scholar 

  40. C. Sanchez, J. Livage, M. Henry, and F. Babonneau, J. Non-Cryst. Solids 100, 65 (1988).

    Google Scholar 

  41. B.E. Yoldas, J. Mater. Sci. 14, 1843 (1979).

    Google Scholar 

  42. B.E. Yoldas, J. Mater. Sci. 12, 1203 (1977).

    Google Scholar 

  43. J.F. Campion, J.K. Maurin, D.A. Payne, and S.R. Wilson, Inorg. Chem. 30, 3244 (1991).

    Google Scholar 

  44. Z. Xu, H.K. Chae, M.H. Frey, and D.A. Payne, Mater. Res. Soc. Symp. Proc. 271, 339 (1992).

    Google Scholar 

  45. D.J. Eichorts and D.A. Payne, Mater. Res. Soc. Symp. Proc. 121, 773 (1988).

    Google Scholar 

  46. D.J. Eichorst, D.A. Payne, and S.R. Wilson, Inorg. Chem. 29, 1458 (1990).

    Google Scholar 

  47. S. Hirano and K. Kato, J. Non-Cryst. Solids 100, 538 (1988).

    Google Scholar 

  48. S. Hirano, T. Yogo, and K. Kikuta, J. Ceram. Soc. Japan 99, 1026 (1991).

    Google Scholar 

  49. R.C. Mehrotra, Mater. Res. Soc. Symp. Proc. 121, 81 (1988).

    Google Scholar 

  50. C.F. Baes and R.E. Mesmer in The Hydrolysis of Cations (Wiley, New York, 1976).

    Google Scholar 

  51. D.L. Kepert in The Early Transition Metals (Academic Press, London, 1972).

    Google Scholar 

  52. C.K. Jorgensen in Inorganic Complexes (Academic Press, London, 1963).

    Google Scholar 

  53. C.M. FlynnJr., Chem. Rev. 84, 31 (1984).

    Google Scholar 

  54. R.L. Gustafson, J. Chem. Educ. 37, 603 (1960).

    Google Scholar 

  55. J. Kragten, Atlas of Metal-Ligand Equilibria in Aqueous Solution (Ellis Horwood Limited, Wiley, New York, 1978).

    Google Scholar 

  56. J. Kragten, Talanta 24, 483 (1977).

    Google Scholar 

  57. A. Ringbom in Complexation in Analytical Chemistry (Interscience, New York, 1963).

    Google Scholar 

  58. O.Van der Biest, J. Kwarciak, D. Dierickx, M. Dhalle, W. Boon, and Y. Bruynseraede, Physica C 190, 119 (1991).

    Google Scholar 

  59. M.P. Pechini, U.S. Patent No.3 330, 697, July (1967).

  60. L.G. Sillén and A.E. Martell (eds.) in Stability Constants of Metal-Ion Complexes, Spec. Publ. Nos. 17 and 25, (Chemical Society, London 1964 and 1972).

    Google Scholar 

  61. F.A.Von Schröder, J.W. Bats, H. Fuess, and E.J. Zehnder, Z. Anorg. Chem. 499, 181 (1983).

    Google Scholar 

  62. D. Knetsch and W.L. Groenveld, Inorg. Chim. Acta 7, 81 (1973).

    Google Scholar 

  63. B.M. Antti, B.K.S. Lundberg, and N. Ingri, Acta Chem. Scand. 26, 3984 (1972).

    Google Scholar 

  64. B.M. Antti, Acta Chem. Scand. A30, 405 (1976).

    Google Scholar 

  65. H.U. Anderson, M.J. Pennell, and J.P. Guha in Advances in Ceramics: Ceramic Powder Science Volume 21, edited by G.L. Messing, K.S. Mazdiyasni, J.W. McCauley, and R.A. Harber, Amer. Ceram. Soc. (Westerville, OH, 1987), p. 91.

    Google Scholar 

  66. S.C. Zhang, G.L. Messing, W. Huebner, and M.M. Coleman, J. Mater. Res. 5, 1806 (1990).

    Google Scholar 

  67. S.G. Cho, P.F. Johnson, and R.A. Condrate, J. Mater. Sci. 25, 4738 (1990).

    Google Scholar 

  68. O. Uchiyama, M. Kakihana, M. Arima, M. Yashima, Y. Suzuki, and M. Yoshimura, Advanced Materials 93, I/A: Ceramics, Powders, Corrosoin and Advanced Processing, edited by N. Mizutani, et al. Trans. Mater. Res. Soc. Jpn. 14A, 743 (1994).

  69. L.W. Tai and P.A. Lessing, J. Mater. Res. 7, 502 (1992).

    Google Scholar 

  70. N.G. Eror and H.U. Anderson in Better Ceramics Through Chemistry II, edited by C.J. Brinker, D.E. Clark, and D.R. Ulrich, Mater. Res. Soc. Proc. 73, 571 (1986).

  71. P.A. Lessing, Amer. Ceram. Soc. Bull. 168, 1002 (1989).

    Google Scholar 

  72. L.W. Tai and P.A. Lessing, J. Mater. Res. 7, 511 (1992).

    Google Scholar 

  73. K.O. Budd and D.A. Payne in Better Ceramics Through Chemistry, edited by C.J. Brinker, D.E. Clark and D.R. Ulrich, Mater. Res. Soc. Proc. 32, 239 (1984).

  74. H. Tomita and T. Goto, Polymer 34, 2277 (1993).

    Google Scholar 

  75. H. Tomita and T. Goto, J. Polym. Sci. 51, 1151 (1994).

    Google Scholar 

  76. M.A. Gülgün, O.O. Popoola, and W.M. Kriven, J. Mater. Res. 10 (1995), in press.

  77. M.A. Gülgün, O.O. Popoola, and W.M. Kriven, J. Amer. Ceram. Soc. 77, 531 (1994).

    Google Scholar 

  78. M.A. Gülgün and W.M. Kriven, a preprint submitted to J. Amer. Ceram. Soc. (1995).

  79. R.C. Mehrotra, Adv. Inorg. Chem. Radiochem. 26, 269 (1983).

    Google Scholar 

  80. T. Kobayashi, K. Nomura, F. Uchikawa, T. Masumi, and Y. Uehara, Japn. J. Appl. Phys. 27, L1880 (1988).

    Google Scholar 

  81. G. Kordas, J. Non Cryst. Solids 121, 436 (1990).

    Google Scholar 

  82. G. Kordas and M.R. Teepe, Appl. Phys. Lett. 57, 1461 (1990).

    Google Scholar 

  83. S. Wu, K. Kramer and G. Kordas, J. Electron. Mater. 17, 135 (1988).

    Google Scholar 

  84. S. Kramer, G. Kordas, J. McMillan, G. Hilton, and D.Van Harligen, Appl. Phys. Lett. 53, 156 (1988).

    Google Scholar 

  85. K. Matsumura, H. Nobumasa, K. Shimizu, T. Arima, Y. Kitano, M. Tanaka, and K. Sushida, Japan. J. Appl. Phys. 28, L1797 (1989).

    Google Scholar 

  86. G. Moore, S. Kramer, and G. Kordas, Mater. Lett. 7, 415 (1989).

    Google Scholar 

  87. S. Shibata, T. Kitagawa, H. Okazaki, T. Kimura, and T. Murakami, Japan. J. Appl. Phys. 27, L53 (1988).

    Google Scholar 

  88. S. Shibata, T. Kitagawa, H. Okazaki, and T. Kimura, Jap. J. Appl. Phys. 27, L646 (1988).

    Google Scholar 

  89. P. Catania, N. Hovnanian, L. Cot, M. Pham Thi, R. Kormann, and J.P. Ganne, Mater. Res. Bull. 25, 631 (1990).

    Google Scholar 

  90. H. Murakami, S. Yaegashi, J. Nishino, Y. Shiohara, and S. Tanaka, J. Japan. Appl. Phys. 29, L445 (1990).

    Google Scholar 

  91. H. Murakami, S. Yaegashi, J. Nishino, Y. Shiohara, and S. Tanaka, J. Japan. Appl. Phys. 29, 2715 (1990).

    Google Scholar 

  92. N.El Khokh, R. Papiernik, L.G. Hubert-Pfalzgraf, F. Chaput, and J.P. Boilot, J. Mater. Sci. Lett. 8, 762 (1989).

    Google Scholar 

  93. Y. Masuda, T. Tateishi, K. Matsubara, R. Ogawa, and Y. Kawate, J. Japan. Appl. Phys. 30, 1390 (1991).

    Google Scholar 

  94. Y. Masuda, R. Ogawa, Y. Kawate, K. Matsubara, T. Tateishi, and S. Sakka, J. Mater. Res. 8, 693 (1993).

    Google Scholar 

  95. P. Ravindranathan, S. Komarneni, A. Bhalla, R. Roy, and L.E. Cross, J. Mater. Res. 3, 810 (1988).

    Google Scholar 

  96. P. Ravindranathan, S. Komarneni, A. Bhalla, and R. Roy, Mater. Lett. 10, 153 (1990).

    Google Scholar 

  97. W. Reith, C. Allgeier, K. Andres, J. Heise, R. Hoben, A.K. Klehe, R. Kleiner, C. Kowal, A. Moise, P. Muller, and J.S. Schilling, Physica C 162–164, 109 (1989).

    Google Scholar 

  98. S.S. Pak, F.C. Montgomery, D.M. Duggan, K.C. Chen, K.S. Mazdiyasni, P.K. Tsai, L.M. Paulius, and M.B. Maple, J. Amer. Ceram. Soc. 75, 2268 (1992).

    Google Scholar 

  99. K.M. Stephens, D.A. Robinson, A. Alvanipour, W.S. Hinton, Morrobel-SosaA. Physica C 168, 351 (1990).

    Google Scholar 

  100. S. Hirano, T. Hayashi, M. Miura, and H. Tomonaga, Bull. Chem. Soc. Japan 62, 888 (1989).

    Google Scholar 

  101. S. Hirano, T. Hayashi, and H. Tomonaga, Japan. J. Appl. Phys. 29, L40 (1990).

  102. H.S. Horowitz, S.J. McLain, A.W. Sleight, J.D. Druliner, P.L. Gai, M.J.Van Kavelaar, J.L. Wagner, B.D. Biggs, and S.J. Poon, Science 243, 66 (1989).

    Google Scholar 

  103. S. Katayama and M. Sekine, J. Mater. Res 6, 1629 (1991).

    Google Scholar 

  104. S. Katayama and M. Sekine, J. Mater. Chem. 1, 1031 (1991).

    Google Scholar 

  105. S. Koriyama, T. Ikemachi, T. Kawano, H. Yamauchi, and S. Tanaka, Physica C 185–189, 519 (1991).

    Google Scholar 

  106. Y. Masuda, R. Ogawa, Y. Kawate, K. Matsubara, T. Tateishi, and S. Sakka, J. Mater. Res. 7, 819 (1992).

    Google Scholar 

  107. T. Monde, H. Kozuka, and S. Sakka, Chem Lett. 2, 287 (1988).

    Google Scholar 

  108. H. Zheng and J.D. Mackenzie, Mater. Lett. 7, 182 (1988).

    Google Scholar 

  109. T. Monde and S. Sakka, Proc. MRS Int. Meet. on Advanced Materials 6, 233 (1989).

    Google Scholar 

  110. T. Nonaka, K. Kaneko, T. Hasegawa, K. Kishio, Y. Takahashi, K. Kobayashi, K. Kitazawa, and K. Fueki, Jpn. J. Appl. Phys. 27, L867 (1988).

    Google Scholar 

  111. M. Guglielmi and G. Carturan, J. Non-Cryst. Solids 100, 16 (1988).

    Google Scholar 

  112. R. Fiedler, H. Follner, Monatsh. Chem. 108, 319 (1977).

    Google Scholar 

  113. H. Follner, Monatsh. Chem. 103, 1438 (1972).

    Google Scholar 

  114. O. Poncelet, L.G. Hubert-Pfalzgraf, L. Toupet, J.C. Daran, Polyhedron 10, 2045 (1991).

    Google Scholar 

  115. S. Katayama and M. Sekine, J. Mater. Res. 5, 683 (1990).

    Google Scholar 

  116. C.H. BrubakerJr. and M. Nicholas, J. Inorg. Nucl. Chem. 27, 59 (1965).

    Google Scholar 

  117. S.C. Goel, K.S. Kramer, P.C. Gibbons, and W.E. Buhro, Inorg. Chem. 28, 3620 (1989).

    Google Scholar 

  118. S.C. Goel, K.S. Kramer, M.Y. Chiang, and W.E. Buhro, Polyhedron 9, 611 (1990).

    Google Scholar 

  119. C.D.E. Lakeman and D.A. Payne, Mater. Chem. Phys. 38, 305 (1994).

    Google Scholar 

  120. N.N. Sauer, E. Garcia, K.V. Salazar, R.R. Ryan, J.A. Martin, J. Am. Chem. Soc. 112, 1524 (1990).

    Google Scholar 

  121. G.R. Lee and J.A. Crayston, Adv. Mater. 5, 434 (1993).

    Google Scholar 

  122. C. Guizard, N. Cygankiewicz, A. Larbot, and L. Cot, J. Non-Cryst. Solids 82, 86 (1986).

    Google Scholar 

  123. S. Doeuff, M. Henry, C. Sanchez, and J. Livage, J. Non-Cryst. Solids 89, 206 (1987).

    Google Scholar 

  124. I. Laaziz, A. Larbot, A. Julbe, C. Guizard, and L. Cot, J. Non-Cryst. Solids 98, 393 (1992).

    Google Scholar 

  125. C. Sanchez and J. Livage, New J. Chem. 14, 513 (1990).

    Google Scholar 

  126. H. Zheng, M.W. Colby, and J.D. Mackenzie in Better Ceramics Through Chemistry III, edited by C.J. Brinker, D.E. Clark, and D.R. Ulrich, 537 (1988).

  127. L.F. Admaiai, L. Daza, P. Grange, and B. Delmon, J. Mater. Sci. Lett. 13, 668 (1994).

    Google Scholar 

  128. S. Hirano, T. Hayashi, and M. Miura, J. Amer. Ceram. Soc. 73, 885 (1990).

    Google Scholar 

  129. G. Kordas, G.A. Moore, J.D. Jorgensen, F. Rotella, R.L. Hitterman, K.J. Volin, and J. Faber, J. Mater. Chem. 1, 175 (1991).

    Google Scholar 

  130. G. Kordas, G.A. Moore, M.B. Salamon, and J.B. Hayter, J. Mater. Chem. 1, 181 (1991).

    Google Scholar 

  131. G. Kordas, M.R. Teepe, D.S. Kenzer, and B. Moon, J. Mater. Chem. 2, 467 (1992).

    Google Scholar 

  132. S. Katayama and M. Sekine, Better Ceramics Through Chemistry IV, Mater: Res. Soc. Proc. Volume 180, edited by B.J.J. Zelinski, C.J. Brinker, D.E. Clark, and D.R. Ulrich (Material Research Society, Pittsburgh, 1990), p. 897.

    Google Scholar 

  133. S. Katayama and M. Sekine, Appl. Phys. Lett. 60, 118 (1992).

    Google Scholar 

  134. M.W. Rupich, B. Lagos, and J.P. Hachey, Appl. Phys. Lett. 55, 2447 (1989).

    Google Scholar 

  135. M.W. Rupich, Y.P. Liu, and J. Ibechem, Appl. Phys. Lett. 60, 1384 (1992).

    Google Scholar 

  136. M.W. Rupich, Y.P. Liu, J. Ibechem, and J.P. hachey, J. Mater. Res. 8, 1487 (1993).

    Google Scholar 

  137. M.W. Rupich, S.F. Cogan, B. Lagos, and J.P. Hachey in High Temperature Superconductors: Fundamental Properties and Novel Materials Processing, edited by D. Christen, J. Narayan, and L. Schneemeyer, Mater. Res. Soc. Symp. Proc. 169 (Pittsburgh, PA, 1990), p. 1209.

  138. L.F. Admaiai, P. Grange, B. Delmon, M. Cassart, J.P. Issi, J. Mater. Sci. 29, 5817 (1994).

    Google Scholar 

  139. M. Awano, K. Kani, Y. Takao, and H. Takagi, J. Ceram. Soc. Japan 100, 434 (1992).

    Google Scholar 

  140. P. Barboux, J.M. Tarascon, L.H. Greene, G.W. Hull, and B.G. Bagley, J. Appl. Phys. 63, 2725 (1988).

    Google Scholar 

  141. P. Catania, N. Hovnanian, and L. Cot, Eurp. J. Solid State Inorg. Chem. 27, 659 (1990).

    Google Scholar 

  142. F. Chen, S. Luo, N. Li, C. Li, B. Jie, G. Li, and D. Yin, Mod. Phys. Lett. B3, 301 (1989).

    Google Scholar 

  143. R.E. Edwards, T.C. Prentice, D.F. Rush, K.T. Scott, and D.L. Segal, Ceramic Notes 89, 32 (1990).

    Google Scholar 

  144. T. Goto, T. Sugishita, and K. Kojima, Physica C 171, 441 (1990).

    Google Scholar 

  145. S.A. Kahn, B.G. Bagley, P. Barboux, and F.E. Torres, Mater. Res. Soc. Symp. Proc. 55, 95 (1989).

    Google Scholar 

  146. S.A. Kahn, B.G. Bagley, P. Barboux, and F.E. Torres, J. Non-Cryst. Solids 110, 14 (1989).

    Google Scholar 

  147. M.L. Kullberg, M.T. Lanagan, W. Wu, and R.B. Poeppel, Supercond. Sci. Technol. 4, 337 (1991).

    Google Scholar 

  148. I. Valente, C. Sanchez, M. Henry, and J. Livage, Ind. Ceram. 836, 193 (1989).

    Google Scholar 

  149. J.G. Wang and R.T. Yang, J. Appl. Phys. 67, 2160 (1990).

    Google Scholar 

  150. C.H. Kwon, S.M. Cho, Y.H. Choi, B.K. Moon, D.Y. Yang, and S.T. Kim, Physica C 185–189, 2107 (1991).

    Google Scholar 

  151. L. Marta, L. Ciontea, T. Petrisor, M. Zaharescu, D. Crisan, and I. Haiduc, J. Sol-Gel Sci. & Technology 2, 437 (1994).

    Google Scholar 

  152. A. Nozue, H. Nasu, K. Kamiya, and K. Tanaka, J. Mater. Sci. 26, 4427 (1991).

    Google Scholar 

  153. C.E. Rice, Van Dover, and G.J. Fisanick, Appl. Phys. Lett. 51, 1842 (1987).

    Google Scholar 

  154. S. Sakka, J. Non Cryst. Solids 121, 417 (1990).

    Google Scholar 

  155. K. Tanaka, A. Nozue, and K. Kamiya, Japn. J. Appl. Phys. 28. L934 (1989).

    Google Scholar 

  156. K. Tanaka, A. Nozue, and K. Kamiya, J. Mater. Sci. 25, 3551 (1990).

    Google Scholar 

  157. T. Umeda, H. Kozuka, and S. Sakka, Adv. Ceram. Mater. 3, 520 (1988).

    Google Scholar 

  158. T. Umeda, H. Kozuka, and S. Sakka, J. Ceram. Soc. Jpn. 98, 709 (1990).

    Google Scholar 

  159. H. Kozuka, T. Umeda, J.S. Jin, and S. Sakka in Better Ceramics Through Chemistry III, edited by J.C. Brinker, D.E. Clark, and D.R. Ulrich, Mater. Res. Soc. Symp. Proc. 121 (Pittsburgh, PA, 1988), p. 639.

  160. H. Kozuka, T. Umeda, J.S. Jin, F. Miyaji, and S. Sakka, J. Ceram. Soc. Jpn. 96, 355 (1988).

    Google Scholar 

  161. S. Sakka, H. Kozuka, and T. Umeda, J. Ceram. Soc. Jpn. 96, 468 (1988).

    Google Scholar 

  162. H. Kozuka and S. Sakka, Bull. Jpn. Inst. Metals 27, 784 (1988).

    Google Scholar 

  163. S. Fujihara, H. Zhuang, T. Yoko, H. Kozuka, and S. Sakka, J. Mater. Res. 7, 2355 (1992).

    Google Scholar 

  164. S. Fujihara, H. Kozuka, T. Yoko, and S. Sakka, J. Sol-Gel Sci. Tec. 1, 133 (1994).

    Google Scholar 

  165. A. Kareiva, M. Karppinen, and L. Niinistö, J. Mater. Chem. 4, 1267 (1994).

    Google Scholar 

  166. Y. Masuda, R. Ogawa, Y. Kawate, T. Tateishi, and N. Hara, J. Mater. Res. 7, 292 (1992).

    Google Scholar 

  167. P.L. Steger and X.Z. Wang, Physica C 213, 433 (1993).

    Google Scholar 

  168. A. Wagner, and G. Gritzner, Supercond. Sci. Technol. 7, 89 (1994).

    Google Scholar 

  169. Q. Xu, L. Bi, D. Peng, G. Meng, G. Zhou, Z. Mao, C. Fan, and Y. Zhang, Supercond. Sci. Technol. 3, 564 (1990).

    Google Scholar 

  170. H. Zhuang, H. Kozuka, and S. Sakka, Japan. J. Appl. Phys. 28, L1805 (1989).

  171. H. Zhuang, H. Kozuka, and S. Sakka, J. Mater. Sci. 25, 4762 (1990).

    Google Scholar 

  172. H. Zhuang, H. Kozuka, T. Yoko, and S. Sakka, Japan. J. Appl. Phys. 29, L1107 (1990).

    Google Scholar 

  173. D.H.A. Blank, H. Kuridhof, and Flokstra, J. Phys. D: Appl. Phys. 21, 226 (1988).

    Google Scholar 

  174. F. Celani, A. Saggese, V. Calzona, M. Putti, L. Liberatori, S. Pace, Polichetti, and R. Scafuro, Physica C 162–164, 903 (1989).

    Google Scholar 

  175. J-H. Choy, J-S. Yoo, J-C. Park, S-G. Kang, W. Kim, and S-G. Kang, Physica C 185–189, 511 (1991).

    Google Scholar 

  176. C-T. Chu and B. Dunn. J. Am. Ceram. Soc. 70, C375 (1987).

  177. C.T. Chu and B. Dunn, J. Mater. Res. 5, 1819 (1990).

    Google Scholar 

  178. S. Darracq, A.C. Pierre, and J. Etourneau, Bull. Soc. Chim. France 2, 175 (1989).

    Google Scholar 

  179. P.S. Devi and H.S. Maiti, J. Solid State Chem. 109, 35 (1994).

    Google Scholar 

  180. P.S. Devi and H.S. Maiti, J. Mater. Res. 9, 1357 (1994).

    Google Scholar 

  181. B. Dunn, C.T. Chu, L-W. Zhou, J.R. Cooper, and G. Gruner, Adv. Ceramic Mater. 2, 343 (1987).

    Google Scholar 

  182. J. Fransaer, T. Eggermont, O. Arkens, J.P. Celis, L. Delaey, J.R. Roos, and O.Van der Biest, Silicates Industries 11–12, 195 (1989).

    Google Scholar 

  183. A. Gholinia and F.R. Sale, Inst. Phys. Conf. Ser. 130, 213 (1993).

    Google Scholar 

  184. J.E. Gordon, R.A. Fisher, S. Kim, and N.E. Phillips, Physica C 162–164, 484 (1989).

    Google Scholar 

  185. E.A. Hayri, M. Greenblatt, K.V. Ramanujachary, M. Nagano, J. Oliver, M.J. Miceli, and Gerhardt, J. Mater. Res. 4, 1099 (1989).

    Google Scholar 

  186. H.S. Horowitz, R.K. Bordia, C.C. Torardi, K.J. Morrissey, M.A. Subramanian, E.M. McCarron, J.B. Michel, T.R. Askew, R.B. Flippen, J.D. Bolt, and U. Chowdhry, Solid State Ionics, 32/33, 1087 (1989).

    Google Scholar 

  187. J-H. Jean, J. Mater. Sci. Lett. 8, 751 (1989).

    Google Scholar 

  188. A. Junod, A. Bezinge, D. Cattani, M. Decroux, D. Eckert, M. François, A. Hewat, J. Muller, and K. Yvon, Helvetica Phys. Acta 61, 460 (1988).

    Google Scholar 

  189. A. Junod, A. Bezinge, and J. Muller, Physica C 152, 50 (1988).

    Google Scholar 

  190. K. Koyama, A. Junod, T. Graf, G. Triscone, and J. Muller, Physica C 185–189, 461 (1991).

    Google Scholar 

  191. R.S. Liu, W.N. Wang, C.T. Chang, and P.T. Wu, Jap. J. Appl. Phys. 28, L2155 (1989).

    Google Scholar 

  192. R.S. Liu, W.N. Wang, P.T. Wu, and C.T. Chang, Physica C 162–164, 113 (1989).

    Google Scholar 

  193. R.S. Liu, R. Janes, M.J. Bennett, and P.P. Edwards, Appl. Phys. Lett. 57, 920 (1990).

    Google Scholar 

  194. R.S. Liu, D.N. Zheng, R. Janes, A.M. Campbell, and P.P. Edwards, Solid State Commun. 76, 1185 (1990).

    Google Scholar 

  195. K. Ma and A. Pierre, J. Mater. Res. 7, 1328 (1992).

    Google Scholar 

  196. K. Ma and A. Pierre, J. Mater. Res. 9, 286 (1994).

    Google Scholar 

  197. T. Nishio and Y. Fujiki, J. Mater. Sci. Lett. 12, 394 (1993).

    Google Scholar 

  198. P. Odier, B. Dubois, M. Gervais, and A. Douy, Mater. Res. Bull. 24, 11 (1989).

    Google Scholar 

  199. R. Pankajavalli, J. Janaki, O.M. Sreedharan, J.B. Gnanamoorthy, G.V.N. Rao, V. Sankarasastry, M.P. Janawadkar, Y. Hariharan, and T.S. Radhakrishnan, Physica C 156, 737 (1988).

    Google Scholar 

  200. S. Roy, A. Das Sharma, S.N. Roy, and H.S. Maiti, J. Mater. Res. 8, 2761 (1993).

    Google Scholar 

  201. F.R. Sale and Mahloojchi, Ceram. Int. 14, 229 (1988).

    Google Scholar 

  202. R. Sanjinés, R.K. Thampi, and J. Kiwi, J. Amer. Ceram. Soc. 71, C512 (1988).

  203. I. Sargánková, M. Timko, J. Kovác, S. Mat'as, P. Diko, and M. Cerník, J. Mater. Sci. Lett. 11, 1718 (1992).

    Google Scholar 

  204. Y.K. Sun and W.Y. Lee, Physica C 212, 37 (1993).

    Google Scholar 

  205. A. Tampieri, G. Celotti, F. Ricciardiello, and G. Russo, Physica C 227, 300 (1994).

    Google Scholar 

  206. G. Triscone, A. Junod, and J. Muller, Physica C 162–164, 470 (1989).

    Google Scholar 

  207. H.K. Varma, K.P. Kumar, K.G.K. Warrier, and A.D. Damodaran, J. Mater. Sci. Lett. 8, 1313 (1989).

    Google Scholar 

  208. P.L. Villa, S. Zannells, V. Ottobenni, and A. Ricca, J. Less-Common Metals 150, 299 (1989).

    Google Scholar 

  209. Y.M. Yang, P. Out, B.R. Zhao, Y.Y. Zhao, L. Li, Q.Z. Ran, and R.Y. Jin, J. Appl. Phys. 66, 312 (1989).

    Google Scholar 

  210. C. Chiang, C.Y. Shei, Y.T. Huang, W.H. Lee, and P.T. Wu, Physica C 170, 383 (1990).

    Google Scholar 

  211. C. Chiang, C.Y. Shei, S.F. Wu, and Y.T. Huang, Appl. Phys. Lett. 58, 2435 (1991).

    Google Scholar 

  212. V. Slusarenko, K.R. Thampi, and J. Kiwi, J. Solid State Chem. 79, 277 (1989).

    Google Scholar 

  213. M. Schieber, T. Tsach, M. Maharizi, M. Levinsky, B.L. Zhou, M. Golosovshy, and D. Davidov, Cryogenics 30, 451 (1990).

    Google Scholar 

  214. P.C. McIntyre, M.J. Cima, and M.F. Ng, J. Appl. Phys. 68, 4183 (1990).

    Google Scholar 

  215. P.C. McIntyre, M.J. Cima, M.F. Ng, R.C. Chiu, and W.E. Rhine, J. Mater. Res. 5, 2771 (1990).

    Google Scholar 

  216. P.C. McIntyre, M.J. Cima, D.H. Liebenberg, and T.L. Francavilla, Appl. Phys. Lett. 58, 2033 (1991).

    Google Scholar 

  217. P.C. McIntyre, M.J. Cima, J.A. SmithJr. R.B. Hallock, M.P. Siegal, and J.M. Phillips, J. Appl. Phys. 71, 1868 (1992).

    Google Scholar 

  218. S. Vilminot, S. Elhadigui, A. Derory, M. Drillon, J.C. Bernier, J.P. Kappler, R. Kuentzler, and Y. Dossmann, Mater. Res. Bull. 23, 521 (1988).

    Google Scholar 

  219. T. Brylewski and K. Przybylski, Applied Superconductivity 1, 737 (1993).

    Google Scholar 

  220. J. Fransaer, J.R. Roos, L. Delaey, O.Van Der Biest, O. Arkens, and J.P. Celis, J. Appl. Phys. 65, 3277 (1989).

    Google Scholar 

  221. B.W. Statt, Z. Wang, M.J.G. Lee, J.V. Yakhmi, P.C.de Camargo, J.F. Major, and J.W. Rutter, Physica C 156, 251 (1988).

    Google Scholar 

  222. J. Fransaer, T. Eggermont, O. Arkens, O.Van Der Biest, E. Beyne, J. Roggen, W. Boon, M. Dhalle, J. Vanacken, B. Wuyts, C.Van Haesendonck, and Y. Bruynseraede, Physica C 162–164, 881 (1989).

    Google Scholar 

  223. T. Fujisawa, A. Takagi, T. Honjoh, K. Okuyama, S. Ohshima, K. Matsuki, and K. Muraishi, Jap. J. Appl. Phys. 8, 1358 (1989).

    Google Scholar 

  224. T. Fujisawa, A. Takagi, K. Okuyama, and S. Ohshima, Jap. J. Appl. Phys 8, 1358 (1989).

    Google Scholar 

  225. A. Gholinia and F.R. Sale, J. Thermal Analysis 40, 349 (1993).

    Google Scholar 

  226. A. Gholinia and F.R. Sale, J. Thermal Analysis 42, 733 (1994).

    Google Scholar 

  227. K. Poels, J. Kwarciak, O.Van der Biest, W. Boon, M. Dhalle, and Y. Bruynseraede, Physica C 185–189, 2413 (1991).

    Google Scholar 

  228. C.Y. Shieh, Y. Huang, M.K. Wu, and C.Y. Huang, Physica C 185–189, 513 (1991).

    Google Scholar 

  229. T. Tsuchiya, T. Okano, and T. Sei, J. Mater. Sci. 27, 3645 (1992).

    Google Scholar 

  230. C.J. Haung, T.Y. Tseng, T.S. Heh, F.H. Chen, W.S. Jong, Y.S. Fran, and S.M. Shiau, Solid State Commun. 72, 563 (1989).

    Google Scholar 

  231. R.V. Kamat, T.V. Vittal Rao, K.T. Pillai, V.N. Vaidya, and D.D. Sood, Physica C 181, 245 (1991).

    Google Scholar 

  232. T. Okano, T. Sei, and T. Tsuchiya, J. Mater. Sci. 27, 4085 (1992).

    Google Scholar 

  233. T. Sei, T. Okano, and T. Tsuchiya, J. Non Cryst. Solids 147&148, 711 (1992).

    Google Scholar 

  234. M. Nagano and Greenblatt, Solid State Commun. 67, 595 (1988).

    Google Scholar 

  235. H. Stephan, K. Gloe, U. Wiesner, and G. Krabbes, Z. anorg. allg Chem. 620, 1915 (1994).

    Google Scholar 

  236. D. Rambabu, Japn. J. Appl. Pjys. 29, 507 (1990).

    Google Scholar 

  237. T.N. Bowmer and Shokoohi, J. mater. Res. 6, 670 (1991).

    Google Scholar 

  238. P.Y. Chu, I. Campion, and R.C. Buchanan, J. Mater. Res. 8, 261 (1993).

    Google Scholar 

  239. P.Y. Chu and R.C. Buchanan, J. Mater. Res. 8, 2134 (1993).

    Google Scholar 

  240. M.E. Gross, M. Hong, S.H. Liou, P.K. Gallagher, and J. Kwo, Appl. Phys. Lett. 52, 160 (1988).

    Google Scholar 

  241. A. Gupta, R. Jagannathan, E.I. Cooper, E.A. Giess, J.I. Landman, and B.W. Hussey, Appl. Phys. Lett. 52, 2077 (1988).

    Google Scholar 

  242. A.H. Hamdi, J.V. Mantese, A.L. Micheli, R.C.O. Laugal, D.F. Dungan, Z.H. Zhang, and K.R. Padmanabhan, Appl. Phys. Lett. 51, 2152 (1987).

    Google Scholar 

  243. A.H. Hamdi, J.V. Mantese, A.L. Micheli, R.A. Waldo, Y.L. Chen, and C.A. Wong, Appl. Phys. Lett. 53, 435 (1988).

    Google Scholar 

  244. M. Klee, W. Brand, and J.W.C.De Vries, J. Cryst. Growth 91, 346 (1988).

    Google Scholar 

  245. M. Klee, G.M. Stollman, S. Stotz, and J.W.C.De Vries, Solid State Commun. 67, 613 (1988).

    Google Scholar 

  246. J.V. Mantese, A.B. Catalan, A.H. Hamdi, and A.L. Micheli, Appl. Phys. Lett. 52, 1741 (1988).

    Google Scholar 

  247. J.V. Mantese, A.B. Catalan, A.H. Hamdi, A.L. Micheli, and K. Studer-Rabeler, Appl. Phys. Lett. 53, 526 (1988).

    Google Scholar 

  248. J.V. Mantese, A.B. Catalan, A.M. Mance, A.H. Hamdi, A.L. Micheli, J.A. Sell, and M.S. Meyer, Appl. Phys. Lett. 53, 1335 (1988).

    Google Scholar 

  249. H. Shimojima, K. Tsukamoto, and C. Yamagishi, Japn. J. Appl. Phys. 28, L226 (1989).

  250. D.F. Vaslow, G.H. Dieckmann, D.D. Elli, A.B. Ellis, D.S. Holmes, A. Lefkow, M. MacGregor, J.E. Nordman, M.F. Petras, and Y. Yang, Appl. Phys. Lett. 53, 324 (1988).

    Google Scholar 

  251. A. Bourdillon, and N.X. Tan Bourdillon in High Temperature Superconductors; Processing and Science, Ch. V (Academic Press, Inc., San Diego, 1994), p. 145.

    Google Scholar 

  252. A. Bailey, G.J. Russell, and K.N.R. Taylor in Studies of High Temperature Superconductors, Volume 9, edited by A. Narlikar (Nova Science Publishers, New York, 1992), p. 145.

    Google Scholar 

  253. L.Q. Feng, K. Mori, Y. Ishikawa, K. Kamigaki, and K. Rokudo, Physica C 185–189, 491 (1991).

    Google Scholar 

  254. R.J. Cava, J.J. Krajewski, W.F. PeckJr., B. Battlog, L.W. RuppJr., R.M. Fleming, A.C.W. James, and P. Marsh, Nature (London) 338, 328 (1989).

    Google Scholar 

  255. J. Karpinski, E. Kaldis, E. Jilek, S. Rusiecki, and B. Bucher, Nature (London) 336, 660 (1988).

    Google Scholar 

  256. D.E. Morris, J.H. Nickel, J.Y.T. Wei, N.G. Asmar, J.S. Scott, U.M. Scheven, C.T. Hultgren, A.G. Markelz, J.E. Post, P.J. Heaney, D.R. Veblen, and R.M. Hazen, Phys. Rev. B39, 7347 (1989).

    Google Scholar 

  257. W. König, and G. Gritzner, Physica C 202, 37 (1992).

    Google Scholar 

  258. M. Kakihana, M. Käll, L. Börjesson, H. Mazaki, H. Yasuoka, P. Berastegui, S. Eriksson, and L-G. Johansson, Physica C 173, 377 (1991).

    Google Scholar 

  259. H. Tamura, H. Mineta, M. Tatsumi, J. Tanishita and S. Yamamoto, Chem. Lett. 1147 (1994).

  260. G.V.R. Rao, D.S.S. Narayana, U.V. Varadaraju, G.V.N. Rao and S. Venkadesan, J. Alloys & Compounds 217, 200 (1995).

    Google Scholar 

  261. G.V.R. Rao, D.S.S. Narayana, U.V. Varadaraju, and S. Venkadesan, Mater. Chem. Phys. (1995), in press.

  262. J. McHale, G.H. Myer, and R.E. Salomon, J. Mater. Res. 10, 1 (1995).

    Google Scholar 

  263. B.I. Lee, T.J. Doi, and T. Yuasa, Physica C 226, 377 (1994).

    Google Scholar 

  264. T. Monde and S. Sakka, Proc. MRS. International Meeting on Advance Materials (1988), p. 233.

  265. D.J. Anderton and F.R. Sale, Powder Metall. 22, 14 (1979).

    Google Scholar 

  266. M.S.G. Baythoun and F.R. Sale, J. Mater. Sci. 17, 2757 (1982).

    Google Scholar 

  267. P. Sujatha Devi and M. Subba Rao, Thermochim. Acta 153, 181 (1989).

    Google Scholar 

  268. P. Sujatha Devi, and M. J. Subba Rao, Solid State Chem. 98, 237 (1992).

    Google Scholar 

  269. C. Marcilly, P. Courty, and B. Delmon, J. Amer. Ceram. Soc. 53, 56 (1970).

    Google Scholar 

  270. P. Courty, H. Ajot, C. Marcilly, and B. Delmon, Powder Technol. 7, 21 (1973).

    Google Scholar 

  271. M. Kato, T. Miyajima, A. Sakuma, T. Noji, Y. Koike, A. Fujiwara, and Y. Saito, Physica C 244, 263 (1995).

    Google Scholar 

  272. K.N. Pearce, Aust. J. Chem. 33, 1511 (1980).

    Google Scholar 

  273. P. Karen and A. Kjekshus, J. Am. Ceram. Soc. 77, 547 (1994).

    Google Scholar 

  274. D. Rambabu, Japan. J. Appl. Phys. 29, 507 (1990).

    Google Scholar 

  275. J.J. Kingsley and K.C. Patil, Mater. Lett. 6, 427 (1988).

    Google Scholar 

  276. R. Gopalan, Y.S.N. Murthy, T. Rajeshekharan, S. Ravi, and V. Seshubai, Mater. Lett. 8, 441 (1989).

    Google Scholar 

  277. I.A. Chick, L.R. Pedarson, G.D. Maupin, J.L. Bates, L.E. Thomas, and G.J. Exarhos, Mater. Lett. 10, 6 (1990).

    Google Scholar 

  278. L.R. Pederson, G.D. Maupin, W.J. Weber, D.J. McReady, and R.W. Stephens, Mater. Lett. 10, 437 (1991).

    Google Scholar 

  279. P. Ravindranathan and K.C. Patil, J. Mater. Sci. Lett. 5, 221 (1986).

    Google Scholar 

  280. P. Ravindranathan, G.V. Mahesh, and K.C. Patil, J. Solid State Chem. 66, 20 (1987).

    Google Scholar 

  281. R.A. Day and A.L. Underwood in Quantitative Analysis, (Prentice-Hall, Inc., Englewood Cliffs, New Jersey, U.S.A. 1967).

    Google Scholar 

  282. Y-M. Chiang, S.L. Furcone, J.A.S. Ikeda, and D.A. Rudman, Mat. Res. Soc. Symp. Proc. 99, 307 (1988).

    Google Scholar 

  283. J. McKitrrick and R. Contreras, Thin Solid Films 206, 146 (1991).

    Google Scholar 

  284. H. Mazaki, H. Yasuoka, M. Kakihana, H. Fujimori, M. Yashima, and M. Yoshimura, Physica C 246, 37 (1995).

    Google Scholar 

  285. L.M. Falter, D.A. Payne, T.A. Friedmann, W.H. Wright, and D.M. Ginsberg in Electro-ceramics, edited by A.J. Moulson, J. Binner, and R. Morrell, British Ceramic Proceedings 41, 261 (1989).

  286. H.H. Wang, K.D. Carllson, U. Geiser, R.J. Thorn, H-C. Kao, M.A. Beno, M.R. Monaghan, T.J. Allen, R.B. Proksch, D.L. Stupka, J.M. Williams, B.K. Flandermeyer, and R.B. Poeppel, Inorg. Chem. 26, 1476 (1987).

    Google Scholar 

  287. M.K. Agarwala, D.L. Bourell, and C. Persad, J. Amer. Ceram. Soc. 75, 1975 (1992).

    Google Scholar 

  288. A. Aoki, S. Ohno, and Y. Muramatsu, J. Non Cryst. Solids 147&148, 720 (1992).

    Google Scholar 

  289. M. Kakihana, L. Börjesson, S. Eriksson, P. Svedlindh, and P. Norling, Physica C 162–164, 931 (1989).

    Google Scholar 

  290. M. Kakihana, L. Börjesson, S. Eriksson, and P. Svedlindh, J. Appl. Phys. 69, 867 (1991).

    Google Scholar 

  291. M. Kakihana, M. Arima, M. Yashima, M. Yoshimura, H. Mazaki, and H. Yasuoka, Advanced Materials 93, I/A: Ceramics, Powders, Corrosoin and Advanced Processing, edited by N. Mizutani, et al. Trans. Mater. Res. Soc. Jpn. 14A, 801 (1994).

  292. H.K. Lee, D. Kim, and S.I. Suck, J. Appl. Phys. 65, 2563 (1989).

    Google Scholar 

  293. S.H. Shieh and W.J. Thomson, Physica C 204, 135 (1992).

    Google Scholar 

  294. W.J. Thomson, H. Wang, D.V. Parkman, D.X. Li, M. Strasik, T.S. Luhman, C. Han, and I.A. Aksay, J. Amer. Ceram. Soc. 72, 1977 (1989).

    Google Scholar 

  295. S.E. Trolier, S.D. Atkinson, P.A. Fuierer, J.H. Adair, and R.E. Newnham, Amer. Ceram. Soc. Bull. 67, 759 (1988).

    Google Scholar 

  296. P. Berastegui, M. Kakihana, M. Yoshimura, H. Mazaki, H. Yasuoka, L-G. Johansson, S. Eriksson, L. Börjesson, and M. Käll, J. Appl. Phys. 73, 2424 (1993).

    Google Scholar 

  297. T-M. Chen and Y.H. Hu, Physica C 190, 124 (1991).

    Google Scholar 

  298. H. Mazaki, M. Kakihana, and H. Yasuoka, Japan. J. Appl. Phys. 30, 38 (1991).

    Google Scholar 

  299. M. Nagai, K. Yamashita, T. Nishio, T. Hattori, M. Matsuda, and M. Takata, Mol. Cryst. Liq. Cryst. 184, 87 (1990).

    Google Scholar 

  300. G. Paz-Pujalt, Physica C 166, 177 (1990).

    Google Scholar 

  301. N.H. Wang, C.M. Wang, H-C.I. Kao, D.C. Ling, H.C. Ku, and K.H. Lii, Japan. J. Appl. Phys. 28, L1505 (1989).

    Google Scholar 

  302. A. Aoki, Japan. J. Appl. Phys. 29, L270 (1990).

    Google Scholar 

  303. T. Asaka, Y. Okazawa, T. Hirayama, and K. Tachikawa, Japan. J. Appl. Phys. 29, L280 (1990).

    Google Scholar 

  304. L. Ben-Dor, H. Diab, and I. Felner, J. Solid State Chem. 88, 183 (1990).

    Google Scholar 

  305. T-M. Chen and Y.H. Hu, J. Solid State Chem. 97, 124 (1992).

    Google Scholar 

  306. T-S. Heh, J-R. Chen, and T-Y. Tseng. Japan. J. Appl. Phys. 29, 652 (1990).

    Google Scholar 

  307. M. Kakihana, M. Yoshimura, H. Mazaki, H. Yasuoka, and L. Börjesson, J. Appl. Phys. 71, 3904 (1992).

    Google Scholar 

  308. H.K. Lee, K.W. Lee, K. Park, N.M. Huang, O.K. Oh, J.S. Kim, K.H. Yoo, Y.B. Kim, C.S. Kim, Y.K. Cho, J.C. Park, and S.I. Suck, J. Appl. Phys. 66, 1881 (1989).

    Google Scholar 

  309. H.K. Lee, K.W. Lee, D.H. Ha, K. Park, and J.C. Park, Appl. Phys. Lett. 55, 1249 (1989).

    Google Scholar 

  310. M. Kakihana, M. Yoshimura, H. Mazaki, H. Yasuoka, and L. Börjesson in Better Ceramics Through Chemistry V, edited by J. Hampden-Smith, W.G. Klemperer, and C.J. Brinker (Materials Research Society, Pittsburgh, PA, 1992), Spring Proceedings 271, p. 395.

    Google Scholar 

  311. R. Mahesh, R. Nagarajan, and C.N.R. Rao, J. Solid State Chem. 96, 2 (1992).

    Google Scholar 

  312. H. Mazaki, M. Takano, R. Kanno, and Y. Takeda, Jpn. J. Appl. Phys. 26, L780 (1987).

    Google Scholar 

  313. E.H. Chen, H.S. Koo, T.Y. Tseng, R.S. Liu, and P.T. Wu, Mater. Lett. 8, 228 (1989).

    Google Scholar 

  314. F.H. Chen, H.S. Koo, and T.Y. Tseng, J. Mater. Sci. 25, 3338 (1990).

    Google Scholar 

  315. F. Chen and T. Tseng, J. Am. Ceram. Soc. 73, 889 (1990).

    Google Scholar 

  316. H.S. Koo, P.T. Wu, F.H. Chen, and T.Y. Tseng, J. Mater. Sci. Lett. 9, 807 (1990).

    Google Scholar 

  317. F.H. Chen, H.S. Kao, and T.Y. Tseng, J. Amer. Ceram. Soc. 75, 96 (1992).

    Google Scholar 

  318. A.A. Hussain and M. Sayer, J. Appl. Phys. 70, 1580 (1991).

    Google Scholar 

  319. A. Douy and P. Odier, Mater. Res. Bull. 24, 1119 (1989).

    Google Scholar 

  320. M. Gervais, P. Odier, and J.P. Coutures, Mater. Sci. Eng. B8, 287 (1991).

    Google Scholar 

  321. F.J. Gotor, P. Odier, M. Gervais, J. Choisnet, and P. Monod, Physica C 218, 429 (1993).

    Google Scholar 

  322. F.J. Gotor, P. Odier, M. Gervais, and J. Choisnet, J. Sol-Gel Sci. & Technol. 2, 427 (1994).

    Google Scholar 

  323. T.V. Mani, H.K. Varma, K.G.K. Warrier, and A.D. Damodaran, Br. Ceram. Trans. J. 91, 120 (1992).

    Google Scholar 

  324. E.J.A. Pope and J.D. Mackenzie, Proceedings of the 38th Electronics Components Conference (IEEE, Los Angeles, 1988), p. 176.

    Google Scholar 

  325. E.J.A. Pope and J.D. Mackenzie in High-Temperature Superconductors II, edited by D.W. Capone, W.H. Butler. B. Batlogg, and C.W. Chu (Materials Research Society, 1988), p. 97.

  326. E.J.A. Pope and J.D. Mackenzie, Proceedings of the 1989 International Superconductor Applications Convention, (1989).

  327. P. Catania, N. Hovnanian, and L. Cot, Mater. Res. Bull. 25, 1477 (1990).

    Google Scholar 

  328. J.G. Fagan and V.R.W. Amarakoon, J. Mater. Res. 8, 1501 (1993).

    Google Scholar 

  329. J.D. Tweed, J.C. McDowell, and N.M.D. Brown, J. Mater. Sci. Lett. 12, 461 (1993).

    Google Scholar 

  330. J.C.W. Chien, B.M. Gong, J.M. Madsen, and R.B. Hallock, Bull. Am. Phys. Soc. 33, 447, 515 (1988).

    Google Scholar 

  331. J.C.W. Chien, B.M. Gong, Y.S. Yang, J.M. Madsen, W.M. Tiernan, and R.B. Hallock, Phys. Rev. B 38, 11853 (1988).

    Google Scholar 

  332. J.C.W. Chien, Polymer Bulletin 21, 1 (1989).

    Google Scholar 

  333. J.C.W. Chien, B.M. Gong, X. Mu, and Y.S. Yang, J. Polymer Science: Part A: Polymer Chemistry 28, 1999 (1990).

    Google Scholar 

  334. J.C.W. Chien, B.M. Gong, Y.S. Yang, J.M. Madsen, W.M. Tiernan, and R.B. Hallock, Physica C 165, 279 (1990).

    Google Scholar 

  335. T. Goto and M. Kada, Japan. J. Appl. Phys. Part 2, 26, L1527 (1987).

  336. T. Goto, I. HOriba, M. Kada, and M. Tsujihara, Japan. J. Appl. Phys. 26, Supplement 26–3, 1211 (1987).

    Google Scholar 

  337. T. Goto and M. Kada, J. Mater. Res. 3, 1292 (1988).

    Google Scholar 

  338. T. Goto and T. Sugishita, J. Mater. Res. 7, 11 (1992).

    Google Scholar 

  339. G.F.De la Fuente, A. Sotelo, Y. Huang, M.T. Ruiz, A. Badía, L.A. Angurel, F. Lera, R. Navarro, C. Rillo, R. Ibañez, D. Beltran, F. Sapiña, and A. Beltran, Physica C 185–189, 509 (1991).

    Google Scholar 

  340. M.T. Ruiz, G.F.de la Fuente, A. Badía, J. Blasco, M. Castro, A. Sotelo, A. Larrea, F. Lera, C. Rillo, and R. Navarro, J. Mater. Res. 8, 1268 (1993).

    Google Scholar 

  341. A. Sotelo, G.F.de la Fuente, F. Lera, D. Beltrán, F. Sapiña, R. Ibáñez, A. Beltrán, and M.R. Bermejo, Chem. Mater. 5, 851 (1993).

    Google Scholar 

  342. S. Maeda, Y. Tsurusaki, Y. Tachiyama, K. Naka, A. Ohki, T. Ohgushi, and T. Takeshita, J. Polymer Science: Part A: Polymer Chemistry 32, 1729 (1994).

    Google Scholar 

  343. M.J. Cima and W.E. Rhine, Adv. Ceram. Mater. 2, 329 (1987).

    Google Scholar 

  344. M.J. Cima, R. Chiu, and W.E. Rhine, Mater. Res. Soc. Symp. Proc. 99, 241 (1988).

    Google Scholar 

  345. J. Macho, R.W. Schaeffer, G.H. Myer, R.E. Salomon, and J.E. Crow, J. Mater. Res. 7, 1046 (1992).

    Google Scholar 

  346. F. Chaput and J.P. Boilot, Silicates Industriels 11–12, 317 (1990).

    Google Scholar 

  347. M. Rajendran and M. Subba Rao, J. Solid State Chem. 113, 239 (1994).

    Google Scholar 

  348. M. Kakihana, M. Arima, M. Yashima, M. Yoshimura, Y. Nakamura, H. Mazaki, and H. Yasuoka, in Sol-Gel Science and Technology, Ceramic Transactions 55, 65, The Am. Ceram. Soc. Westerville, Ohio (1995), in press.

    Google Scholar 

  349. T.W. Gilbert, L. Newman, and L. Klotz, Anal. Chem. 40, 2133 (1968).

    Google Scholar 

  350. D. Beltrán-Porter, E. Martínez-Tamayo, R. Ibáñez, A. Beltrán-Porter, J.V. Folgado, E. Escrivá, V. Muñoz, A. Segura, and Cantarero, A. Mater. Res. Bull. 23, 987 (1988).

    Google Scholar 

  351. C.P. Love, C.C. Torardi, and C.J. Page, Inorg. Chem. 31, 1784 (1992).

    Google Scholar 

  352. M. Kakihana, M. Osada, M. Yashima, and M. Yoshimura, unpublished work.

Download references

Author information

Authors and Affiliations

Authors

Additional information

strictly speaking, sol-gel must include processing, in which a sol (often defined as a suspension of small but discrete particles remaining dispersed in a liquid phase) undergoes a transition to a gel characterized by an infinite three-dimensional network structure spreading uniformly throughout the liquid medium. Thus a gel has to be distinguished either from a viscous liquid of one continuous phase or from a gelatinous precipitate in which a liquid phase is not involved in the solid network. It is generally accepted that a true gel can be prepared in two major chemical ways: (1) a molecular route based upon hydrolysis and polycondensation of metal alkoxides (alkoxide gels) and (2) a network formation route based upon destabilization of dispersed colloidal particles in a liquid medium (particulate gels). According to the rigorous definition of gel, some solution processes, started from metal-organics (other than metal alkoxide), would not be classified into a true sol-gel process. In this paper, however, the term “sol-gel” is broadly used to describe the preparation of inorganic materials by a variety of solution routes. A chemical process which can produce a solid matter or a highly viscous liquid matter with no precipitation is treated as the so-called “sol-gel” process, even when it is likely that the system contains no infinite rigid network.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kakihana, M. Invited review “sol-gel” preparation of high temperature superconducting oxides. Journal of Sol-Gel Science and Technology 6, 7–55 (1996). https://doi.org/10.1007/BF00402588

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00402588

Keywords

Navigation