Skip to main content
Log in

Electrical characteristics of stomatal guard cells: The ionic basis of the membrane potential and the consequence of potassium chlorides leakage from microelectrodes

  • Published:
Planta Aims and scope Submit manuscript

Abstract

The membrane electrical characteristics of stomatal guard cells in epidermal strips from Vicia faba L. and Commelina communis L. were explored using conventional electrophysiological methods, but with double-barrelled microelectrodes containing dilute electrolyte solutions. When electrodes were filled with the customary 1–3 M KCl solutions, membrane potentials and resistances were low, typically decaying over 2–5 min to near-30 mV and <0.2 kω·cm2 in cells bathed in 0.1 mM KCl and 1 mM Ca2+, pH 7.4. By contrast, cells impaled with electrodes containing 50 or 200 mM K+-acetate gave values of-182±7 mV and 16±2 kω·cm2 (input resistances 0.8–3.1 Gω, n=54). Potentials as high as (-) 282 mV (inside negative) were recorded, and impalement were held for up to 2 h without appreciable decline in either membrane parameter. Comparison of results obtained with several electrolytes indicated that Cl- leakage from the microelectrode was primarily responsible for the decline in potential and resistance recorded with the molar KCl electrolytes. Guard cells loaded with salt from the electrodes also acquired marked potential and conductance responses to external Ca2+, which are tentatively ascribed to a K+ conductance (channel) at the guard cell plasma membrane.

Measurements using dilute K+-acetate-filled electrodes revealed, in the guard cells, electrical properties common to plant and fungal cell membranes. The cells showed a high selectivity for K+ over Na+ (permeability ratio PNa/PK=0.006) and a near-Nernstian potential response to external pH over the range 4.5–7.4 (apparent PH/PK=500–600). Little response to external Ca2+ was observed, and the cells were virtually insensitive to CO2. These results are discussed in the context of primary, charge-carrying transport at the guard cell plasma membrane, and with reference to possible mechanisms for K+ transport during stomatal movements. They discount previous notions of Ca2+-and CO2-mediated transport control. It is argued, also, that passive (diffusional) mechanisms are unlikely to contribute to K+ uptake during stomatal opening, despite membrane potentials which, under certain, well-defined conditions, lie negative of the potassium equilibrium potential likely prevailing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

EGTA:

ethylene glycol-bis(β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid

Hepes:

4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid

Mes:

2-(N-morpholino) propanesulfornic acid

E:

equilibrium potential

Gm :

membrane conductance

Rin :

input resistance

Vm :

membrane potential

References

  • Abe, S., Takeda, J. (1986) The membrane potential of enzymatically isolated Nitella expansa protoplasts as compared with their intact cells. J. Exp. Bot. 36, 238–52

    Google Scholar 

  • Adrian, R. (1956) The effect of internal and external postasium concentration on the membrane potential of frog muscle. J. Physiol. (London) 133, 631–58

    Google Scholar 

  • Assmann, S., Simonicini, L., Schroeder, J. (1985) Blue light activates electrogenic ion pumping in guard cell protoplasts of Vicia faba. Nature 318, 285–7

    Google Scholar 

  • Bates, G., Goldsmith, M.-H., Goldsmith, T. (1983) Membranes of oat cells: the inverse relation between voltage and resistance is not due to H+ pumps. Plant Sci. Lett. 30, 279–84

    Google Scholar 

  • Beilby, M.J. (1984) Current-voltage characteristics of the proton pump at Chara plasmalemma: I. pH dependence. J. Membr. Biol. 81, 113–25

    Google Scholar 

  • Beilby, M.J. (1985) Potassium channels at Chara plasmalemma. J. Exp. Bot. 36, 228–39

    Google Scholar 

  • Beilby, M.J. (1986) Potassium channels and different states of Chara plasmalemma. J. Membr. Biol. 89, 241–49

    Google Scholar 

  • Beilby, M.J., Blatt, M.R. (1986) Simultaneous measurements of cytoplasmic K+ concentration and the plasma membrane electrical parameters in single membrane samples of Chara corallina. Plant Physiol. 82, in press

  • Bennett, A., Spanswick, R. (1983) Optical measurements of pH and ΔΨ in corn root membrane vesicles: kinetic analysis of Cl- effects on a proton translocating ATPase. J. Membr. Biol. 71, 95–108

    Google Scholar 

  • Bentrup, F.-W., Gogarten-Boekels, M., Hoffmann, B., Gogarten, J., Baumann, C. (1986) ATP-dependent acidification and tonoplast hyperpolarization in isolated vacuoles from green suspension cells of Chenopodium rubrum L. Proc. Natl. Acad. Sci. USA 83, 2431–33

    Google Scholar 

  • Bertl, A., Felle, H., Bentrup, F.-W. (1984) Amine transport in Riccia fluitans: cytoplasmic and vacuolar pH recorded by a pH-sensitive microelectrode. Plant Physiol. 76, 75–8

    Google Scholar 

  • Bisson, M., Walker, N.A. (1980) The Chara plasmalemma at high pH. Electrical measurements show rapid specific passive uniport of H+ or OH-. J. Membr. Biol. 56, 1–7

    Google Scholar 

  • Bisson, M., Walker, N.A. (1981) The hyperpolarization of the Chara membrane at high pH: effects of external potassium internal pH and DCCD. J. Exp. Bot. 32, 951–71

    Google Scholar 

  • Bisson, M., Walker, N.A. (1982) Control of passive permeability in the Chara plasmalemma. J. Exp. Bot. 33, 520–32

    Google Scholar 

  • Blatt, M.R. (1985) Extracellular potassium activity in attached leaves and its relation to stomatal function. J. Exp. Bot. 36, 240–51

    Google Scholar 

  • Blatt, M.R. (1986a) Calcium and the current-voltage relations of stomatal guard cells. In: Molecular and cellular aspects of calcium in plant development, pp. 285–6, Trewavas, A., ed. Plenum, New York

    Google Scholar 

  • Blatt, M.R. (1986b) Interpretation of steady-state current-voltage curves: consequences and implications of current subtraction in transport studies. J. Membr. Biol. 92, 91–110

    Google Scholar 

  • Blatt, M.R., Rodriguez-Navarro, A., Slayman, C.L. (1984) “Active” potassium uptake by Neurospora occurs in cotransport with protons. Plant Physiol. 75, 1023A

  • Blatt, M.R., Slayman, C.L. (1983) KCl leakage from microelectrodes and its impact on the membrane parameters of a nonexcitable cell. J. Membr. Biol. 72, 223–34

    Google Scholar 

  • Blatt, M.R., Slayman, C.L. (1987) Role of “active” potassium transport in regulation of cytoplasmic pH by non-animal cells. Proc. Natl. Acad. Sci. USA, in press

  • Blatt, M.R., Slayman, C.L. (1986) Current-voltage analysis as a means to in vivo “separation” of primary electrogenic and coupled secondary transport. In: Molecular and cellular aspects of calcium in plant development, pp. 409–10, Trewavas, A., ed., Plenum, New York

    Google Scholar 

  • Cheeseman, J., Hanson, J. (1979) Mathematical analysis of the dependence of cell potential on external potassium in corn roots. Plant Physiol. 63, 1–4

    Google Scholar 

  • Coleman, H., Findlay, G. (1985) Ion channels in the membrane of Chara inflata. J. Membr. Biol. 83, 109–18

    Google Scholar 

  • Coombs, J., Eccles, J., Fatt, P. (1955) The specific ion conductances and the ionic movements across the motoneuronal membrane that produce the inhibitory post-synaptic potential. J. Physiol. (London) 130, 326–73

    Google Scholar 

  • DeMarty, M., Morvan, C., Thellier, M. (1978) Exchange properties of isolated cell walls of Lemna minor L. Plant Physiol. 62, 477–81

    Google Scholar 

  • DeMarty, M., Ripoll, C., Thellier, M. (1980) Ion exchange in plant cell walls. In: Plant membrane transport: current conceptual issues. pp. 34–44, Spanswick, R., Lucas, W., Dainty, J., eds., Elsevier, Amsterdam

    Google Scholar 

  • Erwee, M., Goodwin, P., Van Bel, A. (1985) Cell-cell communication in the leaves of Commelina cyanea and other plants. Plant Cell Environ. 8, 173–8

    Google Scholar 

  • Edwards, A., Bowling, D.J.F. (1984) An electrophysiological study of the stomatal complex of Tradescantia virginiana. J. Exp. Bot. 35, 562–7

    Google Scholar 

  • Edwards, A., Bowling, D.J.F. (1985) Evidence for a CO2-inhibited proton extrusion pump in the stomatal cells of Tradescantia virginiana. J. Exp. Bot. 36, 91–8

    Google Scholar 

  • Findlay, G. (1982) Electrogenic and diffusive components of the membrane of Hydrodictyon africanum. J. Membr. Biol. 68, 179–89

    Google Scholar 

  • Findlay, G., Hope, A. (1975) Electrical properties of plant cells: methods and findings. In: Encyclopedia of plant physiology N.S., vol. 2B: Transport in Cells, pp. 53–92, Lüttge, U., Pitman, M., eds. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Finkelstein, A., Mauro, A. (1977) Physical principles and formalisms of electrical excitability. In: Handbook of physiology, section I. The nervous system, vol. 1, pp. 161–213, Geiger, S., ed., American Physiological Society, Bethesda, Md., USA

    Google Scholar 

  • Fisahn, J., Hansen, U.-P. (1986) The influence of temperature on a K+ channel and on a carrier-type transporter in Nitella. J. Exp. Bot. 37, 440–60

    Google Scholar 

  • Fischer, R., Hsiao, T. (1968) Stomatal opening in isolated epidermal strips of Vicia faba. II. Responses to KCl concentration and the role of potassium absorption. Plant Physiol. 43, 1953–8

    Google Scholar 

  • Fromm, M., Schultz, S.G. (1981) Some properties of KCl-filled microelectrodes: correlation of potassium “leakage” with tip resistance. J. Membr. Biol. 62, 239–44

    Google Scholar 

  • Geisler, C., Lightfoot, E., Schmidt, F., Sy, F. (1972) Diffusion effects of liquid-filled micropipettes: a pseudobinary analysis of electrolyte leakage. IEEE Trans. Biomed Eng. 19, 372–4

    Google Scholar 

  • Goldsmith, M.-H., Cleland, R. (1978) The contribution of tonoplast and plasma membrane to the electrical properties of a higher-plant cell. Planta 143, 261–5

    Google Scholar 

  • Goldsmith, T., Goldsmith, M.-H. (1978) The interpretation of intracellular measurements of membrane potential, resistance, and coupling in cells of higher plants. Planta 143, 267–74

    Google Scholar 

  • Greenleaf, C., Ferrier, J., Dainty, J. (1980) Free charge is the source of net membrane potential. In: Plant membrane transport: current conceptual issues, pp. 427–8, Spanswick, R., Lucas, W., Dainty, J., eds., Elsevier, Amsterdam

    Google Scholar 

  • Gunar, I., Zlotnikova, I., Panichkin, L. (1975) Electrophysiological investigations of cells of the stomatal complex of spiderwort. Soviet Plant Physiol. 22, 704–7

    Google Scholar 

  • Hansen, U.-P., Gradmann, D., Sanders, D., Slayman, C.L. (1981) Interpretation of current-voltage relationships for “active” ion transport systems: I. steady-state reaction-kinetic analysis of class-I mechanisms. J. Membr. Biol. 63, 165–90

    Google Scholar 

  • Hope, A., Walker, N.A. (1975) The Physiology of giant algal cells. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Köhler, K., Steigner, W., Kolbowski, J., Hansen, U.-P., Simonis, W., Urbach, W. (1986) Potassium channels in Eremosphaera viridis. II. current- and voltage-clamp experiments. Planta 167, 66–75

    Google Scholar 

  • Köhler, K., Steigner, W., Simonis, W., Urbach, W. (1985) Potassium channels in Eremosphaera viridis. I. influence of cations and pH on resting membrane potential and on an action-potential-like response. Planta 166, 490–99

    Google Scholar 

  • Ling, G., Gerard, R. (1949) The normal membrane potential of frog sartorius fibers. J. Cell. Comp. Physiol. 34, 383–96

    Google Scholar 

  • MacRobbie, E.A.C. (1978) Lonic relations of stomatal guard cells. Sem. Soc. Exp. Biol. 8, 51–70

    Google Scholar 

  • MacRobbie, E.A.C. (1981) Ion fluxes in ‘isolated’ guard cells of Commelina communis L. J. Exp. Bot. 32, 545–62

    Google Scholar 

  • MacRobbie, E.A.C. (1983) Effects of light/dark on cation fluxes in guard cells of Commelina communis L. J. Exp. Bot. 34, 1695–710

    Google Scholar 

  • MacRobbie, E.A.C., Lettau, J. (1980) Potassium content and aperture of “intact” stomatal and epidermal cells of Commelina communis L. J. Membr. Biol. 56, 249–56

    Google Scholar 

  • Matteson, D., Swenson, R. (1986) External monovalent cations that impede the closing of K+ channels. J. Gen. Physiol. 87, 795–816

    Google Scholar 

  • Miller, A., Parsons, A., Jennings, I., Sanders, D. (1987) Cytoplasmic free calcium concentrations in Neurospora and Nitellopsis: steady-state values and metabolically-induced transients. In: Proc. VII Int. Workshop on Membrane Transport in Plants, Walker, N.A., ed., Australian Academy of Sciences, Canberra, in press

    Google Scholar 

  • Moody, W., Zeiger, E. (1978) Electrophysiological properties of onion guard cells. Planta 139, 159–65

    Google Scholar 

  • Moran, N., Ehrenstein, G., Iwasa, K., Bare, C. Mischke, C. (1984) Ion channels in plasmalemma of wheat protoplasts. Science 226, 935–8

    Google Scholar 

  • Nagai, R., Kishimoto, U. (1964) Cell wall potential in Nitella. Plant Cell Physiol. 5, 21–31

    Google Scholar 

  • Nastuk, W., Hodgkin, A. (1950) The electrical activity of single muscle fibers. J. Cell. Comp. Physiol. 35, 39–74

    Google Scholar 

  • Nelson, D., Ehrenfeld, J., Lindemann, B. (1978) Volume changes and potential artifacts of epithelial cells of frog skin following impalement with microelectrodes filled with 3 M KCl. J. Membr. Biol. (Special. Issue) 91–119

  • Ohkawa, T., Köhler, K., Bentrup, F.-W. (1981) Electrical membrane potential and resistance in photoautotrophic suspension cells of Chenopodium rubrum. L. Planta 151, 88–94

    Google Scholar 

  • Outlaw, W. (1983) Current concepts on the role of potassium in stomatal movements. Physiol. Plant. 59, 302–311

    Google Scholar 

  • Page, K., Kelday, L., Bowling, D.J.F. (1981) The diffusion of KCl from microelectrodes. J. Exp. Bot. 32, 55–8

    Google Scholar 

  • Palevitz, B., Hepler, P. (1985) Changes in dye coupling of stomatal cells of Allium and Commelina demonstrated by microinjection of Lucifer yellow. Planta 164, 473–9

    Google Scholar 

  • Pallaghy, C. (1968) Electrophysiological studies in guard cell of tobacco. Planta 80, 147–53

    Google Scholar 

  • Penny, M., Bowling, D.J.F. (1974) A study of potassium gradients in the epidermis of intact leaves of Commelina communis L. in relation to stomatal opening. Planta 119, 17–25

    Google Scholar 

  • Pitman, M., Lüttge, U. (1983) The ionic environment and plant ionic relations. In: Encyclopedia of plant physiology, N.S., vol. 12C: Physiological plant ecology III, pp. 5–34, Lange, O., Nobel, P., Osmond, C., Ziegler, H., eds. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Raschke, K. (1979) Movements of Stomata. In: Encyclopedia of plant physiology, N.S., vol. 7: Movements of plants, pp. 383–441, Haupt, W., Feinleib, M.-E., eds. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Raschke, K., Schnabl, H. (1978) Availability of chloride affects the balance between potassium chloride and potassium malate in guard cells of Vicia faba L. Plant Physiol. 62, 84–7

    Google Scholar 

  • Robinson, R., Stokes, R. (1959) Electrolyte solutions. Butterworths, London

    Google Scholar 

  • Rodriguez-Navarro, A., Blatt, M.R., Slayman, C.L. (1986) A potassium-proton symport in Neurospora crassa. J. Gen. Physiol. 87, 649–74

    Google Scholar 

  • Rona, J.-P., Pitman, M., Lüttge, U., Ball, E. (1980) Electrochemical data on compartmentation into cell wall, cytoplasm, and vacuole of leaf cells in the CAM genus Kalanchoë. J. Membr. Biol. 57, 25–35

    Google Scholar 

  • Saftner, R., Raschke, K. (1981) Electrical potentials in stomatal complexes. Plant Physiol. 67, 1124–32

    Google Scholar 

  • Salisbury, F., Ross, C. (1978) Plant physiology. Wadsworth, Belmont, Cal., USA

    Google Scholar 

  • Sanders, D. (1984) Gradient-coupled Cl- transport in plant cells. In: Chloride transport coupling in biological membranes and epithelia, pp. 63–120, Gerencser, G., ed. Elsevier, Amsterdam

    Google Scholar 

  • Schnabl, H., Ziegler, H. (1977) The mechanism of stomatal movements in Allium cepa L. Planta 136, 37–43

    Google Scholar 

  • Schroeder, J., Hedrich, R., Fernandez, J. (1984) Potassium-selective single channels in guard cell protoplast of Vicia faba. Nature 312, 361–2

    Google Scholar 

  • Shimmen, T., Kikuyama, M., Tazawa, M. (1976) Demonstration of two stable potential states of plasmalemma of Chara without tonoplast. J. Membr. Biol. 30, 249–270

    Google Scholar 

  • Slayman, C.L. (1965) Electrical properties of Neurospora crassa: effects of external cations on the intracellular potential. J. Gen. Physiol. 49, 69–92

    Google Scholar 

  • Slayman, C.L., Sanders, D. (1984) Electrical kinetics of proton pumping in Neurospora. In: Electrogenic transport: fundamental principles and physiological implications, pp. 307–22, Blaustein, M., Lieberman, M., eds., Raven, New York

    Google Scholar 

  • Smith, J.R. (1983) The tonoplast impedance of Chara. J. Exp. Bot. 34, 120–29

    Google Scholar 

  • Tasaki, I., Singer, I. (1968) Some problems involved in electric measurements of biological systems. Ann. N.Y. Acad. Sci. 148, 36–53

    Google Scholar 

  • Tester, M., Shimmen, T., Beilby, M., MacRobbie, E.A.C. (1987) The transport of ions across the tonoplast of charophytes: a study using permeabilized cells. Proc. VII Int. Workshop on Membrane Transport in Plants, Walker, N.A., ed., Australian Academy of Sciences, Canberra, in press

    Google Scholar 

  • Travis, A., Mansfield, T. (1979) Stomatal responses to light and CO2 are dependent on KCl concentration. Plant Cell Environ. 2, 319–23

    Google Scholar 

  • Walker, N.A. (1955) Microelectrode experiments on Nitella. Austl. J. Biol. Sci. 8, 476–89

    Google Scholar 

  • Wille, A., Lucas, W. (1984) Ultrastructural and histochemical studies on guard-cells. Planta 160, 129–42

    Google Scholar 

  • Willmer, C. (1984) Stomata. Longman Press, London

    Google Scholar 

  • Wyn-Jones, R., Gorham, J. (1983) Osmoregulation. In: Encyclopedia of plant physiology, N.S., vol. 12C: Physiological plant ecology III, pp. 35–58, Lange, O., Nobel, P., Osmond, C., Ziegler, H., eds. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Zeiger, E. (1983) The biology of stomatal guard cells. Annu. Rev. Plant Physiol. 34, 441–75

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blatt, M.R. Electrical characteristics of stomatal guard cells: The ionic basis of the membrane potential and the consequence of potassium chlorides leakage from microelectrodes. Planta 170, 272–287 (1987). https://doi.org/10.1007/BF00397898

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00397898

Key words

Navigation