Skip to main content
Log in

Inorganic C-sources for Lemanea, Cladophora and Ranunculus in a fast-flowing stream: Measurements of gas exchange and of carbon isotope ratio and their ecological implications

  • Published:
Oecologia Aims and scope Submit manuscript

Summary

CO2-and O2-exchange characteristics and δ13C values have been measured in a rhodophycean haptophyte (Lemanea mamillosa), a chlorophycean haptophyte (Cladophora glomerata) and a magnoliophyte rhizophyte (Ranunculus sp.) from a 5 m stretch of the Dichty Burn near Dundee. Light-and CO2-saturated rates of photosynthesis are greatest on a dry weight basis for Cladophora and lowest for Lemanea; the order is reversed on a surface area basis. The CO2 concentration at pH 6.5 at which photosynthesis is half-saturated is 25–40 μM, with Lemanea rather lower than Cladophora or Ranunculus; these half-saturation values are similar to the free CO2 concentration in the Burn water. Lemanea cannot use HCO -3 in photosynthesis, while Cladophora and Ranunculus can. Despite being within a factor or two of saturation with free CO2 in terms of the bulk water concentration, the growth habit of Cladophora and, particularly, Ranunculus means that the high water velocity in the Burn does not necessarily prevent C depletion effects around the plants, thus providing a possible role for HCO -3 use by these plants. Lemanea lives in the fastest-growing parts of the Burn, and its growth habit insures that it is exposed to this high water velocity, thus minimising CO2 depletion during photosynthesis despite the low surface/volume ratio for this plant. δ13C measurements on the inorganic C in the Burn water are consistent with at least part of its excess (above air-equilibrium) inorganic C levels coming from heterotrophic activity. Lemanea has the most negative δ13C value of the three plants, consistent with CO2 use and small diffusion resistances. Ranunculus has the least negative δ13C value, consistent with some CO2 depletion and/or HCO -3 use in situ related to a high diffusion resistance in a rhizophyte which does not have to obtain all of its N and P from the bulk water but can obtain some from the sediments. Cladophora is intermediate, suggesting some CO2 depletion and/or HCO -3 use in this densely growing haptophyte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

RuBPc-o:

Ribulose bisphosphate carboxylase-oxygenese (E. C. 4.1.1.39)

PEPc:

Phosphenolpyruvate carboxylase (E.C 4.1.1.31)

PEPck:

Phosphoenolpyruvate carboxykinase (ATP) (E.C. 4.1.1.48)

References

  • Allen ED, Spence DHN (1981) The differential ability of aquatic plants to utilize the inorganic C supply in fresh waters. New Phytol 87:269–283

    Google Scholar 

  • Arber A (1920) Water Plants (First Edition). University Press Cam bridge

    Google Scholar 

  • Beardall J (1981) CO2 accumulation by Chlorella saccharophila (Chlorophyceae) at low external pH: evidence for active transport of inorganic carbon at the chloroplast envelope. J Phycol 17:371–373

    Google Scholar 

  • Beardall J, Raven JA (1981) Transport of inorganic carbon and the ‘CO2 concentrating mechanism‘ in Chlorella emersonii (Chlorophyceae). J Phycol 17:134–141

    Google Scholar 

  • Beer S, Wetzel RG (1981) Photosynthetic carbon metabolism in the submerged aquatic angiosperm Scirpus subterminalis. Pl Sci Letters 21:199–207

    Google Scholar 

  • Benedict CR (1978) Nature of obligate photo-autotrophy. Ann Rev Pl Physiol 29:67–93

    Google Scholar 

  • Betts WH (1979) Ion transport and photosynthesis of Elodea densa. Ph. D. Thesis, University of Adelaide

  • Bhaskaran S, Benedict CR (1980) The discrimination of 12CO2, 13CO2 by photosynthesis in a submerged aquatic macrophyte. Pl Physiol 65:86s

    Google Scholar 

  • Bhaskaran S, Benedict CR, Wong WW (1981) Photosynthesis, photorespiration and δ13C values of an aquatic angiosperm. Pl Physiol 67:145s

    Google Scholar 

  • Birmingham BC, Colman B (1979) Measurement of carbon dioxide compensation points of freshwater algae. Pl Physiol 64:892–895

    Google Scholar 

  • Blinks LR (1963) The effect of pH on the photosynthesis of littoral marine algae. Protoplasma 57:126–136

    Google Scholar 

  • Boyd CE (1970) Chemical analysis of some vascular aquatic plants. Arch Hydrobiol 67:78–85

    Google Scholar 

  • Bristow JH (1969) The effects of carbon dioxide on the growth and development of amphibious plants. Can J Bot 47:1803–1807

    Google Scholar 

  • Brown JMA, Dromgoole FI, Guest PM (1980) The effect of spectrophotometer characteristics on the measurement of chlorophylls. Aq Bot 9:173–178

    Google Scholar 

  • Browse JA, Dromgoole FI, Brown JMA (1977) Photosynthesis in the aquatic macrophyte Egeria densa. I 14CO2 fixation at natural CO2 concentrations. Austr J Pl Physiol 4:169–176

    Google Scholar 

  • Browse JA, Brown JMA, Dromgoole FI (1979a) Photosynthesis in the aquatic macrophyte Egeria densa. II. Effects of inorganic carbon conditions on 14C fixation. Austr J Pl Physiol 6:1–10

    Google Scholar 

  • Browse JA, Dromgoole FI, Brown JMA (1979b) Photosynthesis in the aquatic macrophyte Egeria densa. III. Gas exchange studies. Austr J Pl Physiol 6:499–512

    Google Scholar 

  • Browse JA, Brown JMA, Dromgoole FI (1980) Malate synthesis and metabolism during photosynthesis in Egeria densa. Planch. Aq Bot 8:295–305

    Google Scholar 

  • Cook CDK (1969) On the determination of leaf form in Ranunculus aquatilis. New Phytol 68:469–480

    Google Scholar 

  • Craig H (1954) The geochemistry of the stable carbon isotopes. Geochim Cosmochim Acta 3:53–92

    Google Scholar 

  • Craig H (1957) Tsotopic standards for carbon and oxygen and correction factors for the mass-spectrometric analysis of carbon dioxide. Geochim Cosmochim Acta 12:133–149

    Google Scholar 

  • Craigie JS, McLachlan J, Majak W, Ackman RG, Tocher CS (1966) Photosynthesis in algae. II Green algae with special reference to Dunaliella spp. and Tetraselmis spp. Can J Bot 44:1247–1254

    Google Scholar 

  • Crank J (1956) The Mathematics of Diffusion. University Press. Oxford

    Google Scholar 

  • Dahm P (1926) Beziehungen der Sphagneen und einiger untergetauchter Wasserpflanzen zum Kalkcarbonat. J wiss Bot 65:314–351

    Google Scholar 

  • Drew EA (1977) The physiology of photosynthesis and respiration in some antarctic marine algae. Br Antarct Surv Bull 46:546–583

    Google Scholar 

  • Egle K (1937) Zur Kenntnis des Lichtfeldes der Pflanze und der Blattfarbstoffe. Planta 26:546–583

    Google Scholar 

  • Farquhar GD (1980) Carbon isotope discrimination by plants: effects of carbon dioxide concentration and temperature via the ratio of intercellular and atmospheric CO2 concentrations. In: GI Pearman (ed), Carbon Dioxide and Climate: Australian Research. Australian Academy of Science, Canberra, pp 105–110

    Google Scholar 

  • Farquhar GD, von Caemmerer S (1981) Electron transport limitation on the CO2 assimilation rates of leaves: a model and some observations in Phaseolus vulgaris L. in: Proceedings of the Fifth International Congress on Photosynthesis, in press

  • Gessner F (1959) Hydrobotanik II. Stoffhaushalt (First Edition). VEB Deutscher Verlag der Wissenschaften, Berlin

    Google Scholar 

  • Golterman HL (1975) Chemistry. In: B.A. Whitton (ed) River Ecology (First Edition) Blackwell Scientific Publications, Oxford p 39–80

    Google Scholar 

  • Gunning BES, Pate JS (1969) “Transfer cells”. Plant cells with wall ingrowths, specialised in relation to short distance transport of solutes-their occurrence, structure and development. Protoplasma 68:107–133

    Google Scholar 

  • Haslam SM (1978) River Plants: the macrophytic vegetation of water courses. (First Edition) University Press, Cambridge.

    Google Scholar 

  • Holaday AS, Bowes G (1980) C4 acid metabolism and dark CO2 fixation in a submersed aquatic macrophyte (Hydrilla verticillata). Pl Physiol 65:331–335

    Google Scholar 

  • Hough RA, Wetzel RG (1977) Photosynthetic pathway of some aquatic plants. Aq Bot 3:297–313

    Google Scholar 

  • Hutchinson GE (1975) A treatise on Limnology, Volume II. Limnological Botany. (First Edition) John Wiley & Sons, New York

    Google Scholar 

  • Hynes HBN (1975) The stream and its valley. Vern. Internat.; Verein Limnol 19:1–15

    Google Scholar 

  • Ikusima I (1965) Ecological studies on the productivity of aquatic plant communities. II. Seasonal changes in standing crop and productivity of a natural submerged community of Vallisneria denserrulata. Bot Mag Tokyo 79:7–19

    Google Scholar 

  • Jordan DB, Ogren WL (1981) Species variation in the specificity of ribulose bisphosphate carboxylase-oxygenase. Nature 291:513–515

    Google Scholar 

  • Keeley JE (1981) Isoetes howellii: a submerged aquatic CAM plant? Amer J Bot 68:420–424

    Google Scholar 

  • Keeley JE, Morton B, Babcock B, Castillo P, Fish B, Jerauld E, Johnson B, Ladre L, Lum M, Miller C, Parker A, van Steenwyk G (1981) Dark CO2-fixation and diurnal malic acid fluctuations in the submerged aquatic Isoetes storkii. Oecologia (Berl) 48:332–333

    Google Scholar 

  • Kremer BP (1980a) Taxonomic implications of algal photo-assimilate patterns. Br Phycol J 15:399–409

    Google Scholar 

  • Kremer BP (1980b) Photorespiration and carboxylation in brown macroalgae. Planta 150:189–190

    Google Scholar 

  • Kremer BP, Küppers E (1977) Carboxylating enzymes and the pathway of photosynthetic C assimilation in different marine algae-evidence for the C4 pathway? Planta 133:191–196

    Google Scholar 

  • Laing WA, Ogren WL, Hagemann RH (1974) Regulation of soybean net photosynthetic CO2 fixation by the interaction of CO2, O2, and ribulose 1,5-disphosphate carboxylase. Pl Physiol 54:678–685

    Google Scholar 

  • Ledger DC (1981) The velocity of the River Tweed and its tributaries. Freshwater Biol 11:1–10

    Google Scholar 

  • Lindahl PEB (1963) On the inhibition of the photosynthesis of aquatic plants by tetramethylthiuram disulphide. Symbolae Botan Upsalienses 17:(4) 1–47

    Google Scholar 

  • Lloyd NDH, Canvin DT, Bristow JM (1977) Photosynthesis and photorespiration in submerged aquatic vascular plants. Can J Bot 55:3001–3005

    Google Scholar 

  • Lucas WJ (1975) Photosynthetic fixation of 14carbon by internodal cells of Chara corallina. J exp Bot 26:331–346

    Google Scholar 

  • Lucas WJ, Tyree MT, Petrov A (1978) Characterization of photosynthetic 14carbon assimilation by Potamogeton lucens L. J exp Bot 29:1409–1423

    Google Scholar 

  • Luther H (1949) Vorshlag zu einer ökologischen Grundeinleitung der Hydrophyten. J appl Chem and Biotechnol 21:238–240

    Google Scholar 

  • Marcus BA (1980) Relationship between light intensity and chlorophyll content in Myriophyllum spicatum L. in Canadice Lake (New York, USA). Aq Bot 9:169–172

    Google Scholar 

  • Mook WG, Bommerson JC, Staverman WH (1974) Carbon isotope fractionation between dissolved bicarbonate and gaseous carbon dioxide. Earth Plant Sci Letters 22:169–176

    Google Scholar 

  • Müller C (1977) On the productivity and chemical composition of some benthic algae in hard-water streams. Int Verh Theor Angew Limnol 20:1457–1462

    Google Scholar 

  • Nakamura K, Ogawa T, Shibata K (1976) Chlorophyll and peptide compositions of the two photosystems of marine green algae. Biolchim biophys Acta 423:227–236

    Google Scholar 

  • Odum EP, Kuenzler EJ, Blunt MZ (1968) Uptake of P32 and primary productivity in marine benthic algae. Limnol Oceanogr 3:340–345

    Google Scholar 

  • O'Leary MH (1981) Carbon isotope fractionation in plants. Phytochemistry 20:553–568

    Google Scholar 

  • Osmond CB, Valaane N, Haslam SM, Uotila P, Roksandic Z (1981) Comparisons of δ13C values in leaves of aquatic macrophytes from different habitats in Britain and Finland; some implications for photosynthetic processes in aquatic plants. Oecologia (Berl) 50:117–124

    Google Scholar 

  • Park R, Epstein S (1960) Carbon isotope fractionation during photosynthesis. Geochim Cosmochim Acta 21:110–126

    Google Scholar 

  • Parker HS (1981) Influence of relative water motion on the growth, ammonium uptake and carbon and nitrogen composition of Ulva lactuca (Chlorophyta). Mar Biol 63:309–318

    Google Scholar 

  • Pate JS, Gunning BES (1972) Transfer cells. Ann Rev Pl Physiol 23:173–196

    Google Scholar 

  • Preston T (1981) The fate of nitrate in eutrophic freshwaters. Ph. D. Thesis, University of Dundee

  • Prins HBA (1974) Photosynthesis and ion uptake in leaves of Vallisneria spiralis L. Ph.D. Thesis, University of Groningen.

  • Ramus J (1978) Seaweed anatomy and photosynthetic performance: the ecological significance of light guides, heterogenous absorption and multiple scatter. J Phycol 14:352–362

    Google Scholar 

  • Rau G (1978) Carbon-13 depletion in a subalpine lake: carbon flow implications. Science 201:901–902

    Google Scholar 

  • Raven JA (1970) Exogenous inorganic carbon sources in plant photosynthesis. Biol Revs 45:167–221

    Google Scholar 

  • Raven JA (1972) Endogenous inorganic carbon sources in plant photosynthesis. II. Comparison of total CO2 production in the light with measured CO2 evolution in the light. New Phytol 71:995–1014

    Google Scholar 

  • Raven JA (1980) Nutrient transport in microalgae. Adv Microbial Physiol 21:47–226

    Google Scholar 

  • Raven JA (1981) Nutritional strategies of submerged benthic plants: the acquisition of C, N and P by rhizophytes and haptophytes. New Phytol 88:1–30

    Google Scholar 

  • Raven JA, Beardall J (1981a) Carbon dioxide as the exogenous inorganic carbon source for Batrachospermum and Lemanea. Br Phycol J 16:165–175

    Google Scholar 

  • Raven JA, Beardall J (1981b) Respiration and photorespiration. In: T Platt (ed) Physiological Bases of Phytoplankton Ecology. Canadian Bulletin of Fisheries and Aquatic Sciences, No. 210, in press

  • Raven JA, Glidewell SM (1978) C4 characteristics of photosynthesis in the C3 alga Hydrodictyon africanum. Plant, Cell and Environment 1:185–197

    Google Scholar 

  • Raven JA, Smith FA (1980) The chemiosmotic approach. In: RM Spanswick WJ Lucas and J Dainty (eds), Plant Membrane Transport: Current Conceptual Issues. Elsevier/North Holland, Amsterdam p 161–178

    Google Scholar 

  • Raven JA, Smith FA, Glidewell SM (1979) Photosynthetic strategies and biological strategies of giant-celled and small-celled macroalgae. New Phytol 83:299–309

    Google Scholar 

  • Rundel PW, Stichler W, Zander RH, Ziegler H (1979) Carbon and hydrogen isotope ratios of bryophytes from arid and humid regions. Oecologia (Berl) 44:91–94

    Google Scholar 

  • Ruttner F (1947) Zur Frage der Karbonatassimilation der Wasserpflanzen I. Teil: Die beiden Haupttypen der Kohlenstoffaufnahme. Öst Bot Zeit 94:265–294

    Google Scholar 

  • Salvucci M, Bowes G (1981) Ribulose bisphosphate carboxylase-oxygenase in aquatic angiosperms. Pl Physiol 67:84s

    Google Scholar 

  • Schurr JM, Ruchti J (1975) Kinetics of oxygen exchange, photosynthesis and respiration in rivers determined from time-delayed correlations between sunlight and dissolved oxygen. Schweiz Z Hydrol 37:144–174

    Google Scholar 

  • Schurr JM, Ruchti J (1977) Dynamics of O2 and CO2 exchange, photosynthesis and respiration in rivers from time-delayed correlations with ideal sunlight. Limnol Oceanogr 5:208–225

    Google Scholar 

  • Sculthorpe CD (1967) The Biology of Aquatic Vascular Plants. Edward Arnol. London.

    Google Scholar 

  • Seybold A, Egle K (1937) Lichtfeld und Blattfarbstoff. I. Planta 26:491–515

    Google Scholar 

  • Seybold A, Egle K (1938) Quantitative Untersuchungen über die Chlorophylle und Carotinoide der Meeresalgen. J Wiss Bot 84:50–80

    Google Scholar 

  • Skirrow G (1975) The dissolved gases — carbon dioxide. In: J P Riley and G Skirrow (eds), Chemical Oceanography, Volume 2 (Second Edition) Academic Press, London, p 1–192

    Google Scholar 

  • Smith BN, Epstein S (1971) Two categories of 13C/12C ratios for higher plants. Pl Physiol 47:380–384

    Google Scholar 

  • Smith FA, Walker NA (1980) Photosynthesis by aquatic plants: effects of unstirred layers in relation to assimilation of CO2 and HCO -3 and to carbon isotope discrimination. New Phytol 86:245–259

    Google Scholar 

  • Sondergaard M, Sand-Jensen K (1979a) Carbon uptake by leaves and roots of Littorella uniflora. Aq Bot 6:1–12

    Google Scholar 

  • Sondergaard M, Sand-Jensen K (1979b) The delay in 14C fixation rates by submerged macrophytes. A source of error in the 14C technique. Aq Bot 6:111–119

    Google Scholar 

  • Spence DH, Chrystal J (1970) Photosynthesis and zonation of freshwater macrophytes. II. Adaptability of species to deep and shallow water. New Phytol 64:217–227

    Google Scholar 

  • Steeman-Nielsen E (1947) Photosynthesis of aquatic plants with special reference to the carbon sources. Dansk Bot Ark 12 (8) 1–71

    Google Scholar 

  • Steeman-Nielsen E (1949) A reversible inactivation of chlorophyll in vivo. Physiol Pl 2:247

    Google Scholar 

  • Steeman-Nielsen E (1960) Uptake of CO2 by the plant. In: E Ruhland (ed), Encyclopedia of Plant Physiology, Volume 5/2 (First Edition) SpringerBerlin, Heidelberg, New York p 70–84

    Google Scholar 

  • Strickland JDH, Parsons TR (1972) A practical handbook of seawater analysis. Bull Fish Res Board Canada No. 167 (Second Edition)

  • Turner JS, Todd M, Brittain EG (1956) The inhibition of photosynthesis by oxygen. I. Comparative physiology of the effect. Austr J Biol Sci 9:494–510

    Google Scholar 

  • Uspenskij EE (1913) Zur Phylogenie und Ökologie der Gattung Potamogeton. I. Luft, Schwimm- und Wasserblätter von Potamogenton perfoliatus. Bull. des Naturalistes de Moscou, N.S., 27:253–262

    Google Scholar 

  • Van KT, Haller WT, Bowes G, Garrard LA (1977) Effects of light quality on growth and chlorophyll composition in Hydrilla. J aquat Plant Manag 15:29–31

    Google Scholar 

  • Walker NA, Smith FA, Cathers IR (1980) Bicarbonate assimilation by freshwater charophytes and higher plants: I. Membrane transport of bicarbonate ions is not proven. J Membrane Biol 57:51–58

    Google Scholar 

  • Wallentinus I (1976) Productivity studies on Cladophora glomerata (L) Kutzing in the Northern Baltic proper. In: G Persoone et al. (eds), Proceedings of the European symposium in Marine Biology, Tenth, Volume 2, Universa Press. Welterenm, Belgium, p 631–651

    Google Scholar 

  • Westlake DF (1965) Some basic data for investigations of the productivity of aquatic macrophytes. Memorie 1st ital Idrobiol 18:(suppl) 229–248

    Google Scholar 

  • Westlake DF (1967) Some effects of low-velocity currents on the metabolism of aquatic macrophytes. J exp Bot 18:187–205

    Google Scholar 

  • Westlake DF (1975a) Macrophytes. In: BA Whitton (ed) River Ecology (First Edition) Blackwell Scientific Publication, Oxford, p 106–128

    Google Scholar 

  • Westlake DF (1975b) Primary productivity of freshwater macrophytes. In: JP Cooper (ed), Photosynthesis and Productivity in Different Environments (First Edition), University Press, Cambridge, p. 189–206

    Google Scholar 

  • Wheeler WN (1980) Effect of boundary layer transport on fixation of C by the giant kelp Macrocystis pyrifera. Mar Biol 56:103–110

    Google Scholar 

  • Whitton BA (1970) Biology of Cladophora in freshwater. Water Research 4:457–476

    Google Scholar 

  • Whitton BA (1975) Algae. In: BA Whitton (ed), River Ecology (First Edition), Blackwell Scientific Publications, Oxford, p 81–105

    Google Scholar 

  • Wickman FE (1952) Variations in the relative abundance of the carbon isotopes in plants. Geochim Cosmochim Acta 2:243–254

    Google Scholar 

  • Wislon K (1948) Water movement in submersed aquatic plants, with special reference to cut shoots of Ranunculus fluitans. Ann Bot 11:91–122

    Google Scholar 

  • Wium-Anderson S (1971) Photosynthetic uptake of free CO2 by the roots of Lobelia dortmanna. Physiol Pl 25:245–248

    Google Scholar 

  • Wium-Anderson S, Anderson JM (1972) Carbon dioxide content of the interstitial water in the sediment of Carne Langso, a Danish Lobelia Lake. Limnol Oceanogr 17:943–947

    Google Scholar 

  • Wong WWL, Benedict CR, Newton RJ, Bhaskaran S (1979) The fractionation of stable carbon isotopes in aquatic submerged angiosperms. Pl Physiol 63, 1s

  • Wood KG (1968) Photosynthesis of Cladophora under unnatural conditions. In: DF Jackson (ed), Algae, Man and the Environment (First Edition), University Press, Syracuse, p 121–133

    Google Scholar 

  • Yeoh H-H, Badger MR, Watson L (1981) Variations in kinetic properties of ribulose 1,5-bisphosphate carboxylase among plants. Pl Physiol 67:1151–5

    Google Scholar 

  • Yokohama Y (1963) Photosynthetic properties of marine benthic green algae from different depths in the coastal area. Bull Jap Soc Phycol 21:70–75

    Google Scholar 

  • Yokohama Y, Kageyama A, Ikawa T, Shimura S (1977) A carotenoid characteristic of chlorophycean seaweeds living in deep coastal waters. Bot Mar 20:433–436

    Google Scholar 

  • Ziegler H (1979) Diskriminierung von Kohlenstoff-und Wasserstoffisotopon: Zusammenhänge mit dem Photosynthesemechanismus und den Standortbedingungen. Ber deut Bot Ges 92:169–184

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raven, J., Beardall, J. & Griffiths, H. Inorganic C-sources for Lemanea, Cladophora and Ranunculus in a fast-flowing stream: Measurements of gas exchange and of carbon isotope ratio and their ecological implications. Oecologia 53, 68–78 (1982). https://doi.org/10.1007/BF00377138

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00377138

Keywords

Navigation