Skip to main content
Log in

Fluid-absent (dehydration) melting of biotite in metapelites in the early stages of crustal anatexis

  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  • Abbott RN, Jr, Clarke DB (1979) Hypothetical liquidus relationships in the subsystem Al2O3-FeO-MgO projected from quartz, alkali-feldspar and plagioclase for a(H2O)<1. Can Mineral 17:549–560

    Google Scholar 

  • Arzi AA (1978) Critical phenomena in the rheology of partially melted rocks. Tectonophysics 44:173–184

    Google Scholar 

  • Ashworth JR (ed) (1985) Migmatites, Blackie, Glasgow

    Google Scholar 

  • Bohlen SR, Boettcher AL, Wall VJ, Clemens JD (1983) Stability of phlogopite-quartz and sanidine-quartz: a model for melting in the lower crust. Contrib Mineral Petrol 83:270–277

    Google Scholar 

  • Brown GC, Fyfe WS (1970) The production of granitic melts during ultrametamorphism. Contrib Mineral Petrol 28:310–318

    Google Scholar 

  • Burnham CW (1967) Hydrothermal fluids at the magmatic stage. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits. Holt, Reinhart and Winston, New York, pp 38–76

    Google Scholar 

  • Burnham CW (1979a) Magmas and hydrothermal fluids. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits. 2nd ed Wiley Interscience, New York, pp 71–136

    Google Scholar 

  • Burnham CW (1979b) The importance of volatile constituents. In: Yoder HS (ed) The evolution of the igneous rocks. Fiftieth Anniversary Perspectives. Princeton University Press, Princeton, pp 439–482

    Google Scholar 

  • Burnham CW (1982) The nature of multicomponent aluminosilicate melts. In: Rickard D, Wickman FE (eds), Chemistry and geochemistry of solutions at high temperatures and pressures. Pergamon Press, Oxford, pp 197–229

    Google Scholar 

  • Clemens JD (1984) Water contents of silicic to intermediate magmas. Lithos 17:273–287

    Google Scholar 

  • Clemens JD, Vielzeuf D (1987) Constraints on melting and magma production in the crust. Earth Planet Sci Letts 86:287–306

    Google Scholar 

  • Clemens JD, Wall VJ (1981) Origin and crystallization of some peraluminous (S-type) granitic magmas. Can Mineral 19:111–131

    Google Scholar 

  • Cygan RT, Lasaga AC (1985) Self diffusion of magnesium in garnet at 750° to 900° C. Am J Sci 285:328–350

    Google Scholar 

  • Dymek RF (1983) Titanium, aluminium and interlayer cation substitutions in biotite from high-grade gneisses, West Greenland. Am Miner 68:880–899

    Google Scholar 

  • Ellis DJ (1986) Garnet-liquid Fe2+ -Mg equilibria and implications for the beginning of melting in the crust and subduction zones. Am J Sci 286:765–791

    Google Scholar 

  • Ferry JM, Spear FS (1978) experimental calibration of the partitioning of Fe and Mg between biotite and garnet. Contrib Mineral Petrol 66:113–117

    Google Scholar 

  • Forbes WC, Flower MFJ (1974) Phase relations of titan-phlogopite, K2Mg4TiAl2Si6O20(OH)4: a refractory phase in the upper mantle? Earth Planet Sci Letts 22:60–66

    Google Scholar 

  • Freer R (1979) An experimental measurement of cation diffusion in almandine garnet. Nature 280:220–222

    Google Scholar 

  • Ganguly J, Saxena SK (1984) Mixing properties of alumino-silicate garnets: constraints from natural and experimental data, and applications to geothermo-barometry. Am Mineral 69:88–97

    Google Scholar 

  • Goldman DS, Albee AL (1977) Correlation of Mg/Fe partitioning between garnet and biotite with 18O/16O partitioning between quartz and magnetite. Am J Sci 227:750–767

    Google Scholar 

  • Grant JA (1985a) Phase equilibria in low-pressure partial melting of pelitic rocks. Amer J Sci 285:409–435

    Google Scholar 

  • Grant JA (1985b) Phase equilibria in partial melting of pelitic rocks. In: Ashworth JR (ed) Migmatites. Glasgow, Blackie and Son, Glasgow, pp 86–144

    Google Scholar 

  • Green TH (1976) Experimental generation of cordieriteor garnetbearing granitic liquids from a pelitic composition. Geology 4:85–88

    Google Scholar 

  • Green TH (1977) Garnet in silicic liquids and its possible use as a P-T indicator. Contrib Mineral Petrol 65:59–67

    Google Scholar 

  • Holdaway MJ, Lee SM (1977) Fe-Mg cordierite stability in highgrade pelitic rocks based on experimental, theoretical, and natural observations. Contrib Mineral Petrol 63:175–198

    Google Scholar 

  • Huang WL, Wyllie PJ (1973) Melting relations of muscovite-granite to 35 kbar as a model for fusion of metamorphosed subducted oceanic sediments. Contrib Mineral Petrol 42:1–14

    Google Scholar 

  • Huang WL, Wyllie PJ (1975) Melting reactions in the system NaAlSi3O8-KAlSi3O8-SiO2 to 35 kbars, dry and with excess water. J Geol 83:737–748

    Google Scholar 

  • Huang WL, Wyllie PJ (1981) Phase relationship of S-type granite with H2O to 35 kbar: Muscovite granite from Harney Peak, South Dakota. J Geophys Res 86:1015–1029

    Google Scholar 

  • Indares A, Martignole J (1985) Biotite-garnet geothermometry in the granulite facies: the influence of Ti and Al in biotite. Am Miner 70:272–278

    Google Scholar 

  • Johannes W (1973) Eine vereinfachte Piston-Zylinder-Apparatur hoher Genauigkeit. Neues Jahrb Mineral Monatsh, pp 337–351

  • Johannes W (1985) The significance of experimental studies for the formation of migmatites. In: Ashworth JR (ed) Migmatites. Blackie, Glasgow, pp 36–85

    Google Scholar 

  • Jurewicz SR, Watson EB (1985) The distribution of partial melt in a granitic system: the application of liquid phase sintering theory. Geochimica Cosmochimica Acta 49:1109–1121

    Google Scholar 

  • Kerrick DM (1972) Experimental determination of muscovite+ quartz stability with PH2O<Ptotal. Am J Sci 272:946–958

    Google Scholar 

  • Lambert IB, Robertson JK, Wyllie PJ (1969) Melting reactions in the system KAlSi3O8-SiO2-H2O to 18.5 kilobars. Am J Sci 267:609–626

    Google Scholar 

  • Le Breton N (1986) Anatéxie de roches pélitiques en l'absence d'une phase fluide libre, 11ème R.S.T., Clermont-Ferrand, Résumé

  • Lundgren LW (1966) Muscovite reactions and partial melting in southeastern Connecticut. J Petrology 7:421–453

    Google Scholar 

  • Luth WC (1976) Granitic rocks. In: D.K. Bailey & R. MacDonald (eds) The evolution of the crystalline rocks. Academic Press, London

    Google Scholar 

  • Luth RW, Boettcher AL (1986) Hydrogen and the melting of silicates. Am Miner 71:264–276

    Google Scholar 

  • Manning DAC, Pichavant M (1983) The role of fluorine and boron in the generation of granitic melts. In: Atherton MP, Gribble CD (eds) Migmatites, melting and metamorphism. Shiva (Nantwich, UK), pp 94–109

    Google Scholar 

  • Newton RC, Haselton HT (1981) Thermodynamics of the garnetplagioclase-Al2SiO5-quartz geobarometer. In: Newton RC, Navrotsky A, Wood BJ (eds) Thermodynamics of minerals and melts. Springer Berlin Heidelberg New York, pp 129–145

    Google Scholar 

  • Petö P (1976) An experimental investigation of melting relations involving muscovite and paragonite in the silica-saturated portion of the system K2O-Na2O-Al2O3-SiO2-H2O to 15 kbar total pressure. Prog in Exper Petrol NERC London, 3rd Report, pp 41–45

  • Petö P, Thompson AB (1974) Wet and dry melting of white micaalkali feldspar assemblages (Abstract). Trans Am Geophys Union 55:479

    Google Scholar 

  • Richardson SW (1968) Staurolite stability in a part of the system Fe-Al-Si-O-H. J Petrology 467:488

    Google Scholar 

  • Richardson SW, Gilbert MC, Bell PM (1969) Experimental determination of kyanite-andalusite and andalusite-sillimanite equilibria; the aluminum silicate triple point. Am J Sci 267:259–272

    Google Scholar 

  • Schmid R (1971) Substitution von Biotit durch Granat and “Regranitisation” in granulitischen Paragneissen der Ivreazone (NItalien). Habilitationsschrift ETH Zürich

  • Schmid R, Wood BJ (1976) Phase relationships in granulitic metapelites from the Ivrea-Verbano zone (Northern Italy). Contrib Mineral Petrol 54:255–279

    Google Scholar 

  • Sparks RSJ, Meyer P, Sigurdsson H (1980) Density variation amongst mid-ocean ridge basalts. Implications for magma mixing and the scarcity of primitive lavas. Earth Planet Sci Letts 46:419–430

    Google Scholar 

  • Stolper E, Walker D (1980) Melt density and the average composition of basalt. Contr Mineral Petrol 74:7–12

    Google Scholar 

  • Thompson AB (1976a) Mineral reactions in pelitic rocks: I. Prediction of P-T-X (Fe-Mg) phase relations. Am J Sci 276:401–424

    Google Scholar 

  • Thompson AB (1976b) Mineral reactions in pelitic rocks: II. Calculation of some P-T-X (Fe-Mg) phase relations. Am J Sci 276:425–454

    Google Scholar 

  • Thompson AB (1982) Dehydration melting of pelitic rocks and the generation of H2O-undersaturated granitic liquids. Am J Sci 282:1567–1595

    Google Scholar 

  • Thompson AB (1984) Mineral reactions and mineral equilibria and their use in geothermometry, geobarometry and geohygrometry. In: Thermometrie et barometrie geologiques, Lagache M (ed) Soc Franc Mineral Cristall 1:179–199

  • Thompson AB (1987) Dehydration melting of crustal rocks. Rendiconti Soc Min Pet Italia (in press)

  • Thompson AB, Algor JR (1977) Model systems for anatexis of pelitic rocks. I. Theory of melting reactions in the system KAlO2-NaAlO2-Al2O3-SiO2-H2O. Contrib Mineral Petrol 63:247–269

    Google Scholar 

  • Thompson AB, Tracy RJ (1979) Model systems for anatexis of pelitic rocks. II Facies series melting and reactions in the system CaO-KAlO2-NaAlO2-Al2O3-SiO2-H2O. Contrib Mineral Petrol 70:429–438

    Google Scholar 

  • Tracy RJ (1978) High grade metamorphic reactions and partial melting in pelitic schist, West-Central Massachusetts. Am J Sci 278:150–178

    Google Scholar 

  • Tracy RJ (1985) Migmatite occurences in New England. In: Ashworth JR (ed) Migmatites, Blackie, Glasgow, pp 204–224

    Google Scholar 

  • Tracy RJ, Robinson PR (1983) Acadian migmatite types in Central Massachusetts. In: Migmatites, melting and metamorphism, Atherton MP, Gribble CD (eds) Shiva, Nantwich, UK, pp 163–17

    Google Scholar 

  • Tuttle OF, Bowen NL (1958) Origin of granite in the light of experimental studies in the system NaAlSi3O8-KAlSi3O8 SiO2-H2O. Geol Soc Am Mem 74, pp 153

    Google Scholar 

  • Van der Molen I, Paterson MS (1979) Experimental deformation of partially melted granite. Contrib Mineral Petrol 70:218–229

    Google Scholar 

  • Vielzeuf D, Boivin P (1984) An algorithm for the construction of petrogenetic grids: application to some equilibria in granulitic paragneisses. Am J Sci 284:760–791

    Google Scholar 

  • Vielzeuf D, Holloway JR (1986) Experimental determination of the fluid-absent melting relations of pelitic rocks at 10 kbar. Sympos Expt Min Geochem, Nancy (abstract)

  • Vielzeuf D, Holloway JR (1988) Experimental determination of the fluid-absent melting relations in the pelitic system. Consequences for crustal differentiation. Contrib Mineral Petrol 98:257–276

    Google Scholar 

  • Weisbrod A (1973) Refinements of the equilibrium conditions of the reaction Fe cordierite=almandine+quartz+sillimanite (+H2O). Carnegie Inst Washington, Yearb 72:518–521

    Google Scholar 

  • Wickham SM (1987) The segregation and emplacement of granitic magmas. J Geol Soc London 144:281–297

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Breton, N.L., Thompson, A.B. Fluid-absent (dehydration) melting of biotite in metapelites in the early stages of crustal anatexis. Contr. Mineral. and Petrol. 99, 226–237 (1988). https://doi.org/10.1007/BF00371463

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00371463

Keywords

Navigation