Skip to main content
Log in

Cell lineage studies in the crayfish Cherax destructor (Crustacea, Decapoda) : germ band formation, segmentation, and early neurogenesis

  • Original articles
  • Published:
Roux's archives of developmental biology Aims and scope Submit manuscript

Summary

The cell division pattern of the germ band of Cherax destructor is described from gastrulation to segmentation, limb bud formation, and early neurogenesis. The naupliar segments are formed almost simultaneously from scattered ectoderm cells arranged in a V-shaped germ disc, anterior to the blastopore. No specific cell division pattern is recognisable. The post-naupliar segments are formed successively from front to rear. Most post-naupliar material is budded by a ring of about 39 to 46 ectoteloblasts, which are differentiated successively and in situ in front of the telson ectoderm. The ectoteloblasts give rise to 15 descendant cell rows by unequal divisions in an anterior direction, following a mediolateral mitotic wave. Scattered blastoderm cells of non-ectoteloblastic origin in front of the ectoteloblast descendants and behind the mandibular region are also arranged in rows. Despite their different origins, teloblastic and non-teloblastic rows cleave twice by mediolateral mitotic waves to form 4 regular descendant rows each. Thereafter, the resulting grid-like pattern is dissolved by stereotyped differential cleavages. Neuroblasts are formed during these differential cleavages and segmentation becomes visible. Each ectoderm row represents a parasegmental unit. Therefore, the segmental boundary lies within the area covered by the descendants of 1 row. Segmental structures (limbs, ganglia) are composed of derivatives of 2 ectoderm rows. The results are compared with the early development of other crustaceans and insects in relation to mechanisms of germ band formation, segmentation, neurogenesis, and evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ambros V (1988) Genetic basis for heterochronic variation. In: McKinney ML (ed) Heterochrony in evolution. Plenum Press, New York, 269–285

    Google Scholar 

  • Bate CM (1976) Embryogenesis of an insect nervous system: I. A map of the thoracic and abdominal neuroblasts in Locusta migratoria. J Embryol Exp Morphol 35:107–123

    Google Scholar 

  • Benesch R (1969) Zur Ontogenie und Morphologie von Artemia salina L. Zool Jb Anat 86:307–458

    Google Scholar 

  • Celada JD, Carral JM, Gonzalez J (1991) A study on the identification and chronology of the embryonic stages of the freshwater crayfish Austropotamobius pallipes (Lereboullet, 1858). Crustaceana 61:225–232

    Google Scholar 

  • Doe CQ, Goodman CS (1985a) Early events in insect neurogenesis I. Development and segmental differences in the pattern of neuronal precursor cells. Dev Biol 111:193–205

    Google Scholar 

  • Doe CQ, Goodman CS (1985b) Early events in insect neurogenesis: II. The role of cell interactions and cell lineage in the determination of neuronal precursor cells. Dev Biol 111:206–219

    Google Scholar 

  • Dohle W (1964) Die Embryonalentwicklung von Glomeris marginata (Villers) im Vergleich zur Entwicklung anderer Diplopoden. Zool Jb Anat 81:241–310

    Google Scholar 

  • Dohle W (1970) Die Bildung und Differenzierung des postnauplialen Keimstreifs von Diastylis rathkei (Crustacea, Cumacea): 1. Die Bildung der Teloblasten und ihrer Derivate. Z Morphol Tiere 67:307–392

    Google Scholar 

  • Dohle W (1972) Über die Bildung und Differenzierung des postnauplialen Keimstreifs von Leptochelia spec. (Crustacea, Tanaidacea). Zool Jb Anat 89:503–566

    Google Scholar 

  • Dohle W (1976a) Die Bildung und Differenzierung des postnauplialen Keimstreifs von Diastylis rathkei (Crustacea, Cumacea): II. Die Differenzierung and Musterbildung des Ektoderms. Zoomorphologie 84:235–277

    Google Scholar 

  • Dohle W (1976b) Zur Frage des Nachweises von Homologien durch die komplexen Zell- und Teilungsmuster in der embryonalen Entwicklung höherer Krebse (Crustacea, Malacostraca, Peracarida). Sitzber Ges Naturforsch Freunde Berlin (N.F.) 16/2: 125–144

    Google Scholar 

  • Dohle W (1989) Zur Frage der Homologie ontogenetischer Muster. Zool Beitr (N.F.) 32:355–389

    Google Scholar 

  • Dohle W, Scholtz G (1988) Clonal analysis of the crustacean segment: the discordance between genealogical and segmental borders. Development 104 (Suppl):147–160

    Google Scholar 

  • Fioroni P (1969) Zum embryonalen und postembryonalen Dotterabbau des Flußkrebses (Astacus; Crustacea malacostraca, Decapoda). Rev Suisse Zool 76:919–946

    Google Scholar 

  • Freeman JA (1989) Segment morphogenesis in Artemia larvae. In: Warner AH, MacRae TH, Bagshaw JC (eds) Cell and molecular biology of Artemia development. Plenum Press, New York, pp 77–90

    Google Scholar 

  • Fulinski B (1908) Beiträge zur embryonalen Entwicklung des Fluß-krebses. Zool Anz 33:20–28

    Google Scholar 

  • Gould SJ (1977) Ontogeny and phylogeny. Harvard University Press, Cambridge

    Google Scholar 

  • Grobben (1879) Die Entwicklungsgeschichte der Moina rectirostris. Arb Zool Inst Wien 2:203–268

    Google Scholar 

  • Hahnenkamp L (1974) Die Bildung und Differenzierung des Keimstreifens der Asseln (Isopoda) and anderer höherer Krebse. Eine vergleichend-embryologische Studie. Zulassungsarbeit für die I. (wissenschaftliche) Staatsprüfung, Abschnitt 11:1–179

    Google Scholar 

  • Hartenstein V, Rudloff E, Campos-Ortega JA (1987) The pattern of proliferation of the neuroblasts in the wild-type embryo of Drosophila melanogaster. Roux's Arch Dev Biol 196:473–485

    Google Scholar 

  • Henry JJ, Raff RA (1990) Evolutionary change in the process of dorsoventral axis determination in the direct developing sea urchin, Heliocidaris erythrogramma. Dev Biol 141:55–69

    Google Scholar 

  • Heymons R (1901) Die Entwicklungsgeschichte der Scolopender. Zoologica 13:1–244

    Google Scholar 

  • Krause G (1939) Die Eitypen der Insekten. Biol Zentralbl 59:495–536

    Google Scholar 

  • Krause G (1987) Evolutionary shifts indicated by the time pattern of embryogenetic events in Pimpla (Hymenoptera) as compared with Tachycines (Orthoptera). Zool Jb Anat 116:453–472

    Google Scholar 

  • Malzacher P (1968) Die Embryogenese des Gehirns paurometaboler Insekten. Untersuchungen an Carausius morosus und Periplaneta americana. Z Morphol Tiere 62:103–161

    Google Scholar 

  • Mee J, French V (1986) Disruption of segmentation in a short germ insect embryo: 11. The structure of segmental abnormalities induced by heat shock. J Embryol Exp Morphol 96:267–294

    Google Scholar 

  • Meinhardt H (1982) Models of biological pattern formation. Academic Press, London

    Google Scholar 

  • Moritz M (1957) Zur Embryonalentwicklung der Phalangiiden (Opiliones, Palpatores) unter besonderer Berücksichtigung der äußeren Morphologie, der Bildung des Mitteldarmes und der Genitalanlage. Zool Jb Anat 76:331–370

    Google Scholar 

  • Oishi S (1959) Studies on the teloblasts in the decapod embryo: I. Origin of teloblasts in Heptacarpus rectirostris STIMPSON. Embryologia 4:283–309

    Google Scholar 

  • Oishi S (1960) Studies on the teloblasts in the decapod embryo: II. Origin of teloblasts in Pagurus samuelis STIMPSON and Hemigrapsus sanguineus DE HAAN. Embryologia 5:270–282

    Google Scholar 

  • Patel NH, Kornberg TB, Goodman CS (1989) Expression of engrailed during segmentation in grasshopper and crayfish. Development 107:201–212

    Google Scholar 

  • Reichenbach H (1888) Zur Embryonalentwicklung des Fluß-krebses. Abh Senckenberg Ges Nat Forsch 14:1–137

    Google Scholar 

  • Sandeman R, Sandeman D (1991) Stages in the development of the embryo of the fresh-water crayfish Cherax destructor. Roux's Arch Dev Biol 200:27–37

    Google Scholar 

  • Sander K (1983) The evolution of patterning mechanisms: gleanings from insect embryogenesis and spermatogenesis. In: Goodwin BC, Holder N, Wylie CG (eds) Development and evolution. Cambridge University Press, pp 137–159

  • Scholtz G (1984) Untersuchungen zur Bildung und Differenzierung des postnauplialen Keimstreifs von Neomysis integer LEACH (Crustacea, Malacostraca, Peracarida). Zool Jb Anat 112:295–349

    Google Scholar 

  • Scholtz G (1986) Die Bildung des Keimstreifs der Amphipoda (Peracarida) — cin abgewandelter Modus innerhalb der Malacostraca (Crustacea). Verh Dtsch Zool Ges 79:190

    Google Scholar 

  • Scholtz G (1990) The formation, differentiation and segmentation of the post-naupliar germ band of the amphipod Gammarus pulex L. (Crustacea, Malacostraca, Peracarida). Proc R Soc Lond B 239:163–211

    Google Scholar 

  • Shiino SM (1950) Studies on the embryonic development of Panulirus japonicus (Von Siebold). J Fac Fish Pref Univ Mie-Tsu 1:1–168

    Google Scholar 

  • Sieg J (1984) Neuere Erkenntnisse zum natürlichen System der Tanaidacea. Eine phylogenetische Studie. Zoologica 46:1–132

    Google Scholar 

  • Sommer R, Tautz D (1991) Asynchronous mitotic domains during blastoderm formation in Musca domestica L. (Diptera). Roux's Arch Dev Biol 199:373–376

    Google Scholar 

  • Tamarelle M, Haget A, Ressouches A (1985) Segregation, division, and early patterning of lateral thoracic neuroblasts in the embryos of Carausius morosus Br. (Phasmida: Lonchodidae). Int J Insect Morphol Embryol 14:307–317

    Google Scholar 

  • Tear G, Bate CM, Martinez Arias A (1988) A phylogenetic interpretation of the patterns of gene expression in Drosophila embryos. Development 104 (Suppl):135–145

    Google Scholar 

  • Technau GM, Becker T, Campos-Ortega JA (1988) Reversible commitment of neural and epidermal progenitor cells during embryogenesis of Drosophila melanogaster. Roux's Arch Dev Biol 197:413–418

    Google Scholar 

  • Thomas JB, Bastiani MJ, Bate M, Goodman CS (1984) From grasshopper to Drosophila: a common plan for neuronal development. Nature 310:203–207

    Google Scholar 

  • Tiegs OW (1940) The embryology and affinities of the Symphyla, based on a study of Hanseniella agilis. Q J Micr Sci 82:1–225

    Google Scholar 

  • Weygoldt P (1960) Embryologische Untersuchungen an Ostrakoden: Die Entwicklung von Cyprideis litoralis (G.S. Brady) (Ostracoda, Podocopa, Cytheridae). Zool Jb Anat 78:369–426

    Google Scholar 

  • Whitington PM, Meier T, King P (1991) Segmentation, neurogenesis and formation of early axonal pathways in the centipede Ethmostigmus rubripes (Brandt). Roux's Arch Dev Biol 199:349–363

    Google Scholar 

  • Wray GA, Raff RA (1990) Novel origins of lineage founder cells in the direct developing sea urchin Heliocidaris erythrogramma. Dev Biol 141:41–54

    Google Scholar 

  • Zehnder H (1934) Uber die Embryonalentwicklung des Fluß-krebses. Acta Zoologica 15:261–408

    Google Scholar 

  • Zilch R (1974) Die Embryonalentwicklung von Thermosbaena mirabilis MONOD. (Crustacea, Malacostraca, Pancarida). Zool Jb Anat 93:462–576

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scholtz, G. Cell lineage studies in the crayfish Cherax destructor (Crustacea, Decapoda) : germ band formation, segmentation, and early neurogenesis. Roux's Arch Dev Biol 202, 36–48 (1992). https://doi.org/10.1007/BF00364595

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00364595

Key words

Navigation