Skip to main content
Log in

Sulfide-oxidizing bacteria in the burrowing echinoid, Echinocardium cordatum (Echinodermata)

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Symbiotic filamentous bacteria thrive in the intestinal caecum of the deposit-feeding echinoid Echinocardium cordatum. Specimens of E. cordatum were collected at Wimereux (Nord Pas-de-Calais, France) in 1991. Their symbiotic bacteria build nodules by forming multilayered mats around detrital particles that enter the caecum. The morphological features of the bacteria are those of Thiothrix, a sulfide-oxidizing genus. The filaments, which may form rosettes, are sheathed and made by a succession of hundreds of rod-shaped bacteria which store elemental sulfur in the presence of external sulfide. Live bacteria are restricted to the outer layers of the nodules. Their sulfide-oxidizing activity was investigated, using a Biological Oxygen Monitor, by measuring the O2-consumption when reduced sulfur compounds are provided. They oxidize thiosulfate and sulfide. Optimal sulfide oxidation occurs at intermediary pO2 (100 to 160 μM O2l-1). Spectrophotometry has confirmed that the sulfur content of the filamentous symbiotic sulfideoxidizing bacteria depends on the presence of external sulfide. This is the first report of symbiotic intradigestive Thiothrixspp.-like bacteria; it lengthens the list of symbioses between sulfide-oxidizing bacteria and invertebrates from sulfide-rich habitats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Bland, J. A., Staley, J. T. (1978). Observation on the biology of Thiothrix. Archs. Microbiol. 117: 79–87

    Google Scholar 

  • Burgh, M. E. de, Singla, C. L. (1984). Bacterial colonization and endocytosis on the gill of a new limpet species from a hydrothermal vent. Mar. Biol. 84: 1–6

    Google Scholar 

  • Cavanaugh, C. M. (1983). Symbiotic chemoautotrophic bacteria in marine invertebrates from sulphide-rich habitats. Nature, Lond. 302: 58–61

    Google Scholar 

  • Cavanaugh, C. M., Gardiner, S. L., Jones, M. L., Jannasch, H. W., Waterbury J. B. (1981). Prokaryotic cells in the hydrothermal vent tube worm Riftia pachyptila Jones: possible chemoautotrophic symbionts. Science, N.Y. 213: 340–342

    Google Scholar 

  • Charlot, G. (1966). Dosage des sulfures solubles en milieu acide fort par l'iode. In: Les méthodes de la chimie analytique, analyse quantitative minérale. Masson et Cie Paris, p. 1023

    Google Scholar 

  • De Ridder, C. (1986). La nutrition chez les échinodermes psammivores. Etude particulière du spatangide fouisseur Echinocardium cordatum (Pennant) (Echinodermata, Echinoïdea). Université Libre de Bruxelles (Faculté des Sciences) Ph. D. Thesis, Brussels

    Google Scholar 

  • De Ridder, C., Jangoux, M. (1985). Origine des sédiments ingérés et durée du transit digestif chez l'oursin spatangide, Echinocardium cordatum (Pennant) (Echinodermata) Annls Inst. océanogr. Paris 6: 51–58

    Google Scholar 

  • De Ridder, C., Jangoux, M., De Vos, L. (1985). Description and significance of a peculiar intradigestive symbiosis between bacteria and a deposit-feeding echinoid. J. exp. mar. Biol. Ecol. 96: 65–75

    Google Scholar 

  • De Ridder, C., Jangoux, M., Van Impe, E. (1985). Food selection and absorption efficiency in the spatangoid echinoid, Echinocardium cordatum (Echinodermata). In: Keegan, B. F., O'Connor, B. D. (eds.) Proc. 5th int. Echinoderm Conf. Galway. Balkema, Rotterdam, p. 507–512

    Google Scholar 

  • Felbeck, H. (1981). Chemoautotrophic potentials of the hydrothermal vent tube worm Riftia pachyptila (Vestimentifera). Science, N. Y. 213: 336–338

    Google Scholar 

  • Felbeck, H. (1983). Sulfide oxidation and carbon fixation by the gutless clam Solemya reidi: an animal-bacteria symbiosis. J. Comp. Physiol. 152: 3–11

    Google Scholar 

  • Felbeck, H. (1985). CO2 fixation in the hydrothermal vent tube worm Riftia pachyptila Jones. Physiol. Zoöl. 58: 272–281

    Google Scholar 

  • Felbeck, H., Childress, J. J., Somero, G. N. (1981). Calvin-Benson cycle and sulfide oxidation enzymes in animals from sulfide-rich habitats. Nature, Lond. 293: 291–293

    Google Scholar 

  • Fenchel, T., Finlay, B. J. (1989). Kentorphoros: a mouthless ciliate with a symbiotic kitchen garden. Ophelia 30: 75–93

    Google Scholar 

  • Fenchel, T., Riedl, R. J. (1970). The sulfide system: a new biotic community underneath the oxidized layer of marine sand bottoms. Mar. Biol. 7: 255–268

    Google Scholar 

  • Gaill, F., Desbruyères, D., Prieur, D. (1987). Bacterial communities associated with “Pompei worms” from the East Pacific Rise hydrothermal vents: SEM, TEM observations. Microb. Ecol. 13: 129–139

    Google Scholar 

  • Gaill, F., Desbruyères, D., Prieur, D., Gourret, J. P. (1984). Mise en évidence de communautés bactériennes épibiontes du “Ver de Pompei” (Alvinella pompejana). C. r., hebd. Séanc. Acad. Sci. Paris 298 (III): 553–558

    Google Scholar 

  • Giere, O., Langheld, C. (1987). Structural organisation, transfer and biological fate of endosymbiotic bacteria in gutless oligochaetes. Mar. Biol. 93: 641–650

    Google Scholar 

  • Giere, O., Wirsen, C. O., Schmidt, C., Jannasch, H. W. (1988a). Contrasting effect of sulfide and thiosulfate on symbiotic CO2-assimilation of Phallodrilus leukodermatus (Annelida). Mar. Biol. 97: 413–419

    Google Scholar 

  • Giere, O., Rhode, B., Dubilier, N. (1988b). Structural peculiarities of the body wall of Tubificoides benedii (Oligochaeta) and possible relations to its life in sulphidic sediments. Zoomorphology 108: 29–39

    Google Scholar 

  • Harold, R., Stanier, R. Y. (1955). The genera Leucothrix and Thiothrix. Bact. Rev. 19: 49–64

    Google Scholar 

  • Hazeu, W., Batenburg-van der Vegte, W. H., Bos, P., van der Pas, R. K., Kuenen, J. G. (1988). The production and utilization of intermediary elemental sulfur during the oxidation of reduced sulfur compounds by Thiobacillus ferrooxidans. Archs Microbiol. 150: 574–579

    Google Scholar 

  • Jannasch, H. W., Mottl, M. J. (1985). Geomicrobiology of deep-sea hydrothermal vents. Science, N. Y. 229: 717–725

    Google Scholar 

  • Jannasch, H. W., Wirsen, C. O. (1981). Morphological survey of microbial mats near deep-sea thermal vents. Appl. envirl. Microbiol. 41: 528–538

    Google Scholar 

  • Jørgensen, B. B., DesMarais, D. J. (1986). Competition for sulfide among colorless and purple sulfur bacteria in cyanobacterial mats. Fedn eur. microbiol. Soc. FEMS Microbiol. Ecol. 38: 179–186

    Google Scholar 

  • Jørgensen, B. B., Revsbesch, N. P. (1983). Colorless sulfur-oxidizing bacteria, Beggiatoa spp. and Thiovulum spp., in O2 and H2S microgradients. Appl. envirol Microbiol. 45: 1261–1270

    Google Scholar 

  • Kuenen, J. G., Bos, P. (1988). Habitats and ecological niches of chemolitho(auto)trophic bacteria. In: Schlegel, H. G., Bowien, B. (eds.) Autotrophic bacteria. Science Tech. Publ., Madison, Wisconsin, p. 53–80

    Google Scholar 

  • Larkin, J. M. (1980). Isolation of Thiothrix in pure culture and observation of a filamentous epiphyte on Thiothrix. Curr. Microbiol. 4: 155–158

    Google Scholar 

  • Larkin, J. M., Henk, M. C., Burton, S. D. (1990). Occurrence of a Thiothrix sp. attached to mayfly larvae and presence of parasitic bacteria in the Thiothrix sp. Appl. envirl Microbiol. 56: 357–361

    Google Scholar 

  • Laubier, L., Desbruyères, D., Chassard-Bouchaud, C. (1983). Microanalytical evidence of sulfur accumulation in a polychaete from deep-sea hydrothermal vents. Mar. Biol. Lett. 4: 113–116

    Google Scholar 

  • Lawrey, N. V., Jani, V., Jensen, T. E. (1981). Identification of the sulfur inclusion body in Beggiatoa alba B18LD by energy-dispersive X-ray microanalysis. Curr. Microbiol. 6: 71–74

    Google Scholar 

  • Le Pennec, M., Fiala-Medioni, A. (1988). The role of the digestive tract of Calyptogena laubieri and Calyptogena phaseoliformis, vesicomyid bivalves of the subduction zones of Japan. Oceanologica Acta 11: 193–199

    Google Scholar 

  • Loiseleur, J. (1963). Techniques de laboratoire, Vol 2. Chimie clinique. Masson et Cie, Paris

    Google Scholar 

  • Nelson, D. C., Wirsen, C. O., Jannash, H. W. (1989). Characterization of large autotrophic Beggiatoa spp. abundant at hydrothermal vents of the Guayamas Bassin. Appl. envirol Microbiol. 55: 2909–2917

    Google Scholar 

  • Oeschger, R., Schmaljohann, R. (1988). Association of various types of epibacteria with Halicryptus spinulosus (Priapulida). Mar. Ecol. Prog. Ser. 48: 285–293

    Google Scholar 

  • Ott, J. A., Novak, R. (1989). Living at an interface: meiofauna at the oxygen/sulfide boundary of marine sediments. In: Ryland, J. S., Tyler, P. A. (eds.) Reproduction, genetics and distribution of marine organisms. 23rd European Marine Biology Symposium, p. 415–422

  • Powell, E. N., Crenshaw, M. A., Rieger, R. M. (1979). Adapatations to sulfide in the meiofauna of the sulfide system I. 35S-sulfide accumulation and the presence of a sulfide detoxification system. J. exp. mar. Biol. Ecol. 37: 57–76

    Google Scholar 

  • Prieur, D., Jeanthon, C. (1987). Preliminary study of heterotrophic bacteria isolated from two deep-sea hydrothermal vent invertebrates: Alvinella pompejana (Polychaete) and Bathymodiolus thermophilus (Bivalve). Symbioses 4: 87–98

    Google Scholar 

  • Rau, G. H., Hedges, J. I. (1979). Carbon-13 depletion in a hydrothermal vent mussel: suggestion of chemosynthetic food source. Science, N. Y. 203: 648–649

    Google Scholar 

  • Reid, R. G. B., Brand, D. G. (1986). Sulfide-oxydizing symbiosis in lucinaceans: implications for bivalve evolution. Veliger 29 (1): 3–24

    Google Scholar 

  • Somero, G. N., Childress, J. J., Anderson, A. E. (1989). Transport, metabolism, and detoxification of hydrogen sulfide in animals from sulfide-rich marine environments. CRC critical Rev. aquat. Sci. 1: 591–614

    Google Scholar 

  • Southward, A. J., Southward, E. C., Dando, P. R., Barrett, R. L., Ling, R. (1986). Chemoautotrophic function of bacterial symbionts in small pogonophora. J. mar. biol. Ass. U. K. 66: 415–437

    Google Scholar 

  • Strohl, W. R. (1974). Beggiatoales. In: Buchanan, R. E., Gibbons, N. E. (eds.) Bergey's manual of determinative bacteriology, 8th edn. The Williams & Wilkins Co., Baltimore, Maryland, p. 2089–2105

    Google Scholar 

  • Strohl, W. R., Geffers, I., Larkin, J. M. (1981). Structure of the sulfur inclusion envelopes from four Beggiatoas. Curr. Microbiol. 6: 75–79

    Google Scholar 

  • Temara, A. (1990). Caractères d'une symbiose bactérienne intradigestive chez l'echinide fouisseur Echinocardium cordatum (Echinodermata). Université Libre de Bruxelles (Faculté des Sciences), Master Thesis, Brussels

    Google Scholar 

  • Temara, A., De Ridder, C. (1990). Features of an intradigestive bacterial symbiosis in the burrowing echinoid Echinocardium cordatum. Belgian J. Zool. 120: 56 (abstract)

    Google Scholar 

  • Temara, A., De Ridder, C., Kaisin, M. (1991). Presence of an essential polyunsaturated fatty acid in intradigestive bacterial symbionts of a deposit-feeder echinoid (Echinodermata). Comp. Biochem. Physiol. 100: 503–505

    Google Scholar 

  • Vetter, R. D. (1985). Elemental sulfur in the gills of three species of clams containing chemoautotrophic symbiotic bacteria: a possible inorganic energy storage compound. Mar. Biol. 88: 33–42

    Google Scholar 

  • Vismann, B. (1990). Sulfide detoxification and tolerance in Nereis (Hediste) diversicolor and Nereis (Neanthes) virens (Annelida: Polychaeta). Mar. Ecol. Prog. Ser. 59: 229–238

    Google Scholar 

  • Vismann, B. (1991). Sulfide tolerance: physiological mechanisms and ecological implications. Ophelia. 34: 1–27

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by O. Kinne, Oldendorf/Luhe

Rights and permissions

Reprints and permissions

About this article

Cite this article

Temara, A., de Ridder, C., Kuenen, J.G. et al. Sulfide-oxidizing bacteria in the burrowing echinoid, Echinocardium cordatum (Echinodermata). Marine Biology 115, 179–185 (1993). https://doi.org/10.1007/BF00346333

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00346333

Keywords

Navigation