Skip to main content
Log in

Neuropathological changes caused by hydrocephalus

  • Review
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Summary

The medical literature concerning neuropathological changes caused by hydrocephalus is reviewed. In both humans and experimental animals the ependyma suffers focal destruction, cerebral blood vessels are distorted and capillaries collapse, there is damage to axons and myelin in the periventricular white matter, and occasionally neurons suffer injury. The damage appears to result from mechanical distortion of the brain combined with impaired cerebral blood flow. If ventriculomegaly develops very early, foci of cortical dysgenesis may be the result. The character and distribution of pathological changes are dependent on the age at which hydrocephalus develops, the rate and magnitude of ventricular enlargement, and the duration of hydrocephalus. Diversionary shunting of cerebrospinal fluid can only incompletely reverse the damage and the potential for reversal diminishes as the duration of hydrocephalus increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Akai K, Uchigasaki S, Tanaka U, Komatsu A (1987) Normal pressure hydrocephalus: neuropathological study. Acta Pathol Jpn 37:97–110

    Google Scholar 

  2. Antoniou AG, Emery JL (1979) The infundibulum of the hypophysis in hydrocephalus. Z Kinderchir 28:321–328

    Google Scholar 

  3. Asada M, Tamaki N, Kanazawa Y, Matsumoto S, Matsuo M, Kimura S, Fujii S, Kaneda Y (1978) Computer analysis of periventricular lucency on the CT scan. Neuroradiology 16:207–211

    Google Scholar 

  4. Auer RN, Weiloch I, Olsson Y, Siesjo BK (1984) The distribution of hypoglycemic brain damage. Acta Neuropathol (Berl) 64:177–191

    Google Scholar 

  5. Auersperg A (1927) Das Verhalten der Kerne am Boden des III. Ventrikels bei Hydrozephalus. Arb Neurol Inst Wein Univ 29:163–169

    Google Scholar 

  6. Azzi GM, Ham SD, Canady AI, Mitchell JA (1993) Changes in whole brain specific gravity and ventricular size in kaolininduced hydrocephalus (abstract). Child's Nerv Syst 9:45

    Google Scholar 

  7. Ball MJ (1976) Neurofibrillary tangles in the dementia of “normal pressure” hydrocephalus. Can J Neurol Sci 3:227–235

    Google Scholar 

  8. Ball MJ, Vis CL (1978) Relationship of granulovacuolar degeneration in hippocampal neurones to aging and to dementia in normal-pressure hydrocephalus. J Gerontol 33:815–824

    Google Scholar 

  9. Bannister CM, Mundy JE (1979) Some scanning electron microscopic observations of the ependymal surface of hydrocephalic Hy 3 mice and a human infant. Acta Neurochir (Wien) 46:159–168

    Google Scholar 

  10. Berker E, Goldstein G, Lorder J, Priestley B, Smith A (1992) Reciprocal neurological development of twins discordant for hydrocephalus. Dev Med Child Neurol 34:623–632

    Google Scholar 

  11. Biondi C (1934) Zur Histopathology des menschlichen Plexus chorioideus und Ependyms. Arch Psychiatr 10:666–728

    Google Scholar 

  12. Borit A, Sidman RL (1972) New mutant mouse with communicating hydrocephalus and secondary aqueductal stenosis. Acta Neuropathol (Berl) 21:316–331

    Google Scholar 

  13. Bradley WG, Whittemore AR, Watanabe AS, Davis SJ, Teresi LM, Homyak M (1991) Association of deep white matter infaretion with chronic communicating hydrocephalus: implications regarding the possible origin of normal-pressure hydrocephalus. Am J Neuroradiol 12:31–39

    Google Scholar 

  14. Bret P (1990) L'hydrocephalie chronique de l'adulte. Neurochirurgie 36 [Suppl 1]:1–159

    Google Scholar 

  15. Brooks DJ, Beany RP, Powell M, Leenders KL, Crockard HA, Thomas DGT, Marshall J, Jones T (1986) Studies on cerebral oxygen metabolism, blood flow, and blood volume, in patients with hydrocephalus before and after surgical decompression using positron emission tomography. Brain 109:613–628

    Google Scholar 

  16. Bruni JE, Del Bigio MR, Clattenburg RE (1985) Ependyma: normal and pathological. A review of the literature. Brain Res Rev 9:1–19

    Google Scholar 

  17. Bruni JE, Del Bigio MR, Cardoso ER, Persaud TVN (1988) Hereditary hydrocephalus in laboratory animals and humans. Exp Pathol 35:239–249

    Google Scholar 

  18. Bundgaard M (1986) Pathways across the vertebrate bloodbrain barrier: morphological viewpoints. Ann N Y Acad Sci 481:7–19

    Google Scholar 

  19. Castejon OJ (1980) Electron microscopic study of capillary wall in human cerebral edema. J Neuropathol Exp Neurol 49:296–328

    Google Scholar 

  20. Chovanes GI, McAllister JP, Lamperti AA, Salotto AG, Truex RC (1988) Monoamine alterations during experimental hydrocephalus in neonatal rats. Neurosurgery 22:86–91

    Google Scholar 

  21. Clark RG, Milhorat TH (1970) Experimental hydrocephalus. 3. Light microscopic findings in acute and subacute obstructive hydrocephalus in the monkey. J Neurosurg 32:400–413

    Google Scholar 

  22. Cohen HL, Haller JO, Pollack A (1990) Ultrasound of the septum pellucidum. Recognition of evolving fenestrations in the hydrocephalic infant. J Ultrasound Med 9:377–383

    Google Scholar 

  23. Collins P (1979) Experimental obstructive hydrocephalus in the rat: a scanning electron microscopic study. Neuropathol Appl Neurobiol 5:45–56

    Google Scholar 

  24. D'Addario V, Kurjak A (1985) Ultrasound investigation of the fetal cerebral ventricles. J Perinat Med 13:67–77

    Google Scholar 

  25. Dambska M, Laure-Kamionowska MG (1990) Myelination as a parameter of normal and retarded brain maturation. Brain Dev 12:214–220

    Google Scholar 

  26. Dandy WE, Backfan KD (1913) An experimental and clinical study of internal hydrocephalus. JAMA 61:2216–2217

    Google Scholar 

  27. Davison AN, Dobbing J (1966) Myelination as a vulnerable period in brain development. Br Med Bull 22:40–44

    Google Scholar 

  28. De Rosa MJ, Olmstead CE, Reacock WJ, Outram CPE, Gayek R, Vinters HV, Fisher RS (1992) Dysplasia of the olfactory bulb in a rabbit model of hydrocephalus. Soc Neurosci 18:1447 [Abstr]

    Google Scholar 

  29. De Rosa MJ, Olmstead CF, Peacock WJ, Gayek RJ, Vinters HV, Fisher RS (1992) Cortical dysplasia in an experimental model of hydrocephalus in the rabbit. J Neuropathol Exp Neurol 51:339

    Google Scholar 

  30. De SN (1950) A study of the changes in the brain in experimental internal hydrocephalus. J Pathol Bacteriol 62:197–208

    Google Scholar 

  31. Del Bigio MR (1989) Hydrocephalus-induced changes in the composition of cerebrospinal fluid. Neurosurgery 25:416–423

    Google Scholar 

  32. Del Bigio MR, Bruni JE (1987) Cerebral water content in silicone oil-induced hydrocephalic rabbits. Pediatr Neurosci 13:72–77

    Google Scholar 

  33. Del Bigio MR, Bruni JE (1988) Changes in periventricular vasculature of rabbit brain following induction of hydrocephalus after shunting. J Neurosurg 69:115–120

    Google Scholar 

  34. Del Bigio MR, Bruni JE (1988) Periventricular pathology in hydrocephalic rabbits before and after shunting. Acta Neuropathol 77:186–195

    Google Scholar 

  35. Del Bigio MR, Bruni JE (1991) Silicone oil-induced hydrocephalus in the rabbit. Child's Nerv Syst 7:79–84

    Google Scholar 

  36. Del Bigio MR, Bruni JE, Fewer HD (1985) Human neonatal hydrocephalus: an electron microscopic study of the periventricular tissue. J Neurosurg 63:56–63

    Google Scholar 

  37. Diggs J, Price AC, Burt AM, Flor WJ, McKanna JA, Novak GR, James AE (1986) Early changes in experimental hydrocephalus. Invest Radiol 21:118–121

    Google Scholar 

  38. DiRocco C, DiTrapani G, Maira G, Bentivoglio M, Macchi G, Rossi GF (1977) Anatomo-clinical correlations in normotensive hydrocephalus. Reports on three cases. J Neurol Sci 33:437–452

    Google Scholar 

  39. DiRocco C, DiTrapani G, Pettorossi VE, Caldarelli M (1979) On the pathology of experimental hydrocephalus induced by artificial increase in endoventricular CSF pulse pressure. Childs Brain 5:81–95

    Google Scholar 

  40. Dohrmann GJ (1971) The choroid plexus in experimental hydrocephalus. A light and electron microscopic study in normal, hydrocephalic, and shunted hydrocephalic dogs. J Neurosurg 34:56–69

    Google Scholar 

  41. Drake JM, Potts DG, Lemaire C (1989) Magnetic resonance imaging of silastic-induced canine hydrocephalus. Surg Neurol 31:28–40

    Google Scholar 

  42. Earnest MP, Fahn S, Karp JH, Rowland LP (1974) Normal pressure hydrocephalus and hypertensive cerebrovascular disease. Arch Neurol 31:262–266

    Google Scholar 

  43. Edvinsson L, Nielsen KC, Owman C, Rosengren E, West KA (1972) Concomitant fall in brain dopamine and homovanillic acid in hydrocephalic rabbits. Eur Neurol 37:647–649

    Google Scholar 

  44. Edwards MSB, Harrison MR, Halks-Miller M, Nakayama DK, Berger MS, Glick PL, Chinn DH (1984) Kaolin-induced congenital hydrocephalus in utero in fetal lambs and rhesus monkeys. J Neurosurg 60:115–122

    Google Scholar 

  45. Ehara K, Matsumoto S, Yoshida N, Kuno T, Tanaka C (1982) Ascending norepinephrine pathways impaired in experimental hydrocephalus. Jpn J Pharmacol 32:205–208

    Google Scholar 

  46. Emery JL (1964) Effect of continual decompression using Holter valve on weights of cerebral hemispheres in children with hydrocephalus and spina bifida cystica. Arch Dis Child 39:379–383

    Google Scholar 

  47. Emery JL (1965) Intracranial effects of long-standing decompression of the brain in children with hydrocephalus and meningomyelocele. Dev Med Child Neurol 7:302–309

    Google Scholar 

  48. Emery JL (1968) Intra-hemispherical distances in congenital hydrocephalus associated with meningomyelocele. Dev Med Child Neurol 10 [Suppl 15]:21–29

    Google Scholar 

  49. Fan KJ, Pezeshkpour G (1987) Neurofibrillary tangles in association with congenital hydrocephalus. J Natl Med Assoc 79:1001–1003, 1006

    Google Scholar 

  50. Feigin IH (1983) White matter myelinolysis after brain edema. Bull Soc Belge Ophtalmol 208:481–482

    Google Scholar 

  51. Fink EB (1927) Internal hydrocephalus and hypopituitarism. Arch Neurol Psychiatry 17:332–336

    Google Scholar 

  52. Fishman RA, Greer M (1963) Experimental obstructive hydrocephalus. Changes in the cerebrum. Arch Neurol 8:156–161

    Google Scholar 

  53. Fleischhauer K (1972) Ependyma and subependymal layer. In: Bourne GH (ed) The Structure and function of nervous tissue. Academic Press, New York, pp 1–46

    Google Scholar 

  54. Foltz EL (1984) Hydrocephalus and CSF pulsatility: clinical and laboratory studies. In: Shapiro K, Marmarou A, Portnoy H (eds) Hydrocephalus. Raven Press, New York, pp 337–362

    Google Scholar 

  55. Foltz EL, Shurtleff DB (1963) Five-year comparative study of hydrocephalus in children with and without operation (113 cases). J Neurosurg 20:1064–1079

    Google Scholar 

  56. Foncin JF, Redondo A, LeBeau J (1976) Le cortex cerebral des malades attients d'hydrocephalie a pression normale: etude ultrastructurale. Acta Neuropathol (Berl) 34:353–357

    Google Scholar 

  57. Friede RL (1962) A quantitative study of myelination in hydrocephalus. J Neuropathol Exp Neurol 21:645–648

    Google Scholar 

  58. Friede RL (1989) Developmental Neuropathology, 2nd edn. Springer-Verlag, Berlin Heidelberg New York Tokyo, pp 220–230

    Google Scholar 

  59. Fritz W, Kalborczyk H, Schimidt K (1989) Transcranial Doppler sonographic identification of a subgroup of patients with normal pressure hydrocephalus with coexistent vascular disease and treatment failure. Neurosurgery 25:777–780

    Google Scholar 

  60. Gadsdon DR, Variend S, Emery JL (1978) The effect of hydrocephalus upon the myelination of the corpus callosum. Z Kinderchir 25:311–319

    Google Scholar 

  61. Gadsdon DR, Variend S, Emery JL (1979) Myelination of the corpus callosum. II. The effect of relief of hydrocephalus upon the processes of myelination. Z Kinderchir 28:314–321

    Google Scholar 

  62. Gallyas F, Zoltay G, Dames W (1992) Formation of “dark” (argyrophilic) neurons of various origin proceeds with a common mechanism of biophysical nature (a novel hypothesis). Acta Neuropathol 83:504–509

    Google Scholar 

  63. Gilles FH (1991) Perinatal neuropathology. In: Davis RL, Robertson DM (eds) Textbook of neuropathology, vol. 2. Williams and Wilkins, Baltimore, pp 281–330

    Google Scholar 

  64. Glees P, Voth D (1988) Clinical and ultrastructural observations of maturing human frontal cortex. I. Biopsy material of hydrocephalic infants. Neurosurg Rev 11:273–278

    Google Scholar 

  65. Glees P, Hasan M, Voth D, Schwarz M (1989) Fine structural features of the cerebral microvasculature in hydrocephalic human infants: correlated clinical observations. Neurosurg Rev 12:315–321

    Google Scholar 

  66. Go KG, Stokroos I, Blaauw EH, Zuiderveen F, Molenaar I (1976) Changes of the ventricular ependyma and choroid plexus in experimental hydrocephalus as observed by scanning electron microscopy. Acta Neuropathol (Berl) 34:55–64

    Google Scholar 

  67. Gopinath G, Bhatia R, Gopinath PG (1979) Ultrastructural observations in experimental hydrocephalus in the rabbit. J Neurol Sci 43:333–344

    Google Scholar 

  68. Graff-Radford NR, Godersky JC (1987) Idiopathic normal pressure hydrocephalus and systemic hypertension. Neurology 37:868–871

    Google Scholar 

  69. Granholm L (1966) Induced reversibility of ventricular dilatation in experimental hydrocephalus. Acta Neurol Scand 42:581–588

    Google Scholar 

  70. Greitz TVB, Grepe AOL, Kalmer MSF, Lopez J (1969) Pre-and postoperative evaluation of cerebral blood flow in low-pressure hydrocephalus. J Neurosurg 41:644–651

    Google Scholar 

  71. Hakim S, Venegas JG, Burton JD (1976) The physics of the cranial cavity, hydrocephalus and normal pressure hydrocephalus: mechanical interpretation and mathematical model. Surg Neurol 5:187–210

    Google Scholar 

  72. Hale PM, McAllister JP, Katz SD, Wright LC, Lovely TJ, Miller DW, Wolfson BJ, Salotto AG, Shroff DV (1992) Improvement of cortical morphology in infantile hydrocephalic animals after ventriculoperitoneal shunt placement. Neurosurgery 31:1085–1096

    Google Scholar 

  73. Hasan M, Glees P (1990) The fine structure of human cerebral perivascular pericytes and juxtavascular phagocytes: their possible role in hydrocephalic edema resolution. J Hirnforsch 31:237–249

    Google Scholar 

  74. Hassin GB (1932) Hydrocephalus: studies of the pathology and pathogenesis with remarks on the cerebrospinal fluid. Arch Neurol Psychiatry 24:1164–1186

    Google Scholar 

  75. Hattori H, Takeda M, Kudo T, Nishimura T, Hashimoto S (1992) Cumulative white matter changes in the gerbil brain under chronic cerebral hypoperfusion. Acta Neurochir (Wien) 84:437–442

    Google Scholar 

  76. Higashi K, Asahisa H, Ueda N, Kobayashi K, Hara K, Noda Y (1986) Cerebral blood flow and metabolism in experimental hydrocephalus. Neurol Res 8:169–176

    Google Scholar 

  77. Higashi K, Noda Y, Tachibana S (1989) Study of brain tissue impedance in the hydrocephalic cat. J Neurol Neurosurg Psychiatry 52:636–642

    Google Scholar 

  78. Hill A, Volpe JJ (1982) Decrease in pulsatile flow in the anterior cerebral arteries in infantile hydrocephalus. Pediatrics 69:4–7

    Google Scholar 

  79. Hiratsuka H, Tabata H, Tsuruoka S, Aoyagi M, Okada K, Inaba Y (1982) Evaluation of periventricular hypodensity in experimental hydrocephalus by metrizamide CT ventriculography. J Neurosurg 56:235–240

    Google Scholar 

  80. Hirayama A (1980) Histopathological study of congenial and acquired experimental hydrocephalus. Brain Dev 2:171–189

    Google Scholar 

  81. Hochwald GM (1985) Animal models of hydrocephalus: recent developments Proc Soc Exp Biol Med 178:1–11

    Google Scholar 

  82. Hochwald GM, Sahar A, Sadik AR, Ransohoff J (1969) Cerebrospinal fluid production and histological observations in animals with experimental obstructive hydrocephalus. Exp Neurol 25:190–199

    Google Scholar 

  83. Hochwald GM, Boal RD, Marlin AE, Kumar AJ (1975) Changes in regional blood flow and water content of brain and spinal cord in acute and chronic experimental hydrocephalus. Dev Med Child Neurol 17 [Suppl 35]:42–50

    Google Scholar 

  84. Hoffman HJ, Smith MSM (1986) The use of shunting devices for cerebrospinal fluid in Canada. Can J Neurol Sci 13:81–87

    Google Scholar 

  85. Hughes CP, Siegel BA, Coxe WS, Gado MH, Grubb RL, Coleman RE, Berg L (1978) A dult idiopathic communicating hydrocephalus with and without shunting. J Neurol Neurosurg Psychiatry 41:961–971

    Google Scholar 

  86. Inaba Y, Hirasuka H, Tsuyuma M, Tabata H, Tsuruoka S (1984) Evaluation of periventricular hypodensity in clinical and experimental hydrocephalus by metrizamide computed tomography. In: Go KG, Baethmann A (eds) Brain edema. Plenum Press, New York, pp 299–310

    Google Scholar 

  87. Irigoin C, Rodriguez EM, Heinrichs M, Frese K, Herzog S, Oksche A, Rott R (1990) Immunocytochemical study of the subcommissural organ of rats with induced postnatal hydrocephalus. Exp Brain Res 82:384–392

    Google Scholar 

  88. Ito M (1976) Significance of shunting operation for compensated hydrocephalus. Experimental study of the ependymal layer with HRP and electron microscopy. Neurol Med Chir (Tokyo) 16:227–236

    Google Scholar 

  89. James AE, Flor WJ, Novak GR, Strecker EP, Burns B, Epstein M (1977) Experimental hydrocephalus. Exp Eye Res [Suppl]:435–459

  90. James AE, Flor WJ, Novak GR, Ribas JL, Parker JL, Sickel WL (1980) The ultrastructural basis of periventricular edema: preliminary studies. Radiology 135:747–750

    Google Scholar 

  91. Jinkens JR (1991) Clinical manifestations of hydrocephalus caused by impingemant of the corpus callosum on the falx: an MR study in 40 patiens. Am J Neuroradiol 12:331–340

    Google Scholar 

  92. Jones HC, Bucknall RM, Harris NG (1991) The cerebral cortex in congenital hydrocephalus in the H-Tx rat: a quantitative light microscopic study. Acta Neuropathol 82:217–224

    Google Scholar 

  93. Kaiser G, Ruedeberg A, Arnold M (1989) Endocrinological disorders in shunted hydrocephalus. Z Kinderchir 44 [Suppl 1]:16–17

    Google Scholar 

  94. Kaplan MS (1983) Proliferation of subependymal cells in the adult primate CNS: differential uptake of DNA labeled precursors. J Hirnforsch 24:23–33

    Google Scholar 

  95. Katayama Y, Tsubokawa T, Kinoshita K, Koshinaga M, Kawamata T, Miyazaki S (1991) Impaired synaptic plasticity and dendritic damage of hippocampal CA1 pyramidal cells in chronic hydrocephalus. In: Matsumoto S, Tamaki N (eds) Hydrocephalus. Pathogenesis and treatment. Springer, Tokyo, p 58–67

    Google Scholar 

  96. Kimura M, Tanaka A, Yoshinaga S (1992) Significance of periventricular hemodynamics in normal pressure hydrocephalus. Neurosurgery 30:701–705

    Google Scholar 

  97. Klosovsky BN (1968) Hydrocephalus. In: Minckler J (ed) Pathology of the nervous system, McGraw-Hill, New York, pp 456–462

    Google Scholar 

  98. Kuschinsky W, Paulson OB (1992) Capillary circulation in the brain. Cerebrovasc Brain Metab Rev 4:261–286

    Google Scholar 

  99. Lawson RF, Raimondi AJ (1973) Hydrocephalus-3; a murine mutant. I. Alterations in fine structure of choroid plexus and ependyma. Surg Neurol 1:115–128

    Google Scholar 

  100. Leech RW (1991) Pathologic considerations. In: Leech RW, Brumback RA (eds) Hydrocephalus: current clinical concepts. Mosby Year Book, St. Louis, pp 39–44

    Google Scholar 

  101. Levin VA, Milhorat TH, Fenstermacher JD, Hammock MK, Rall DP (1971) Physiological studies on the development of obstructive hydrocephalus in the monkey. Neurology 21:238–246

    Google Scholar 

  102. Liszczak TM, Black PM, Tzouras A, Foley L, Zervas NT (1984) Morphological changes of the basilar artery, ventricles, and choroid plexus after experimental SAH. J Neurosurg 61:486–493

    Google Scholar 

  103. Lovely TJ, McAllister JP, Miller DW, Lamperti AA, Wolfson BJ (1989) Effects of hydrocephalus and surgical decompression on cortical norepinephrine levels in neonatal cats. Neurosurgery 24:43–52

    Google Scholar 

  104. Lui K, Hellmann J, Sprigg A, Daneman A (1990) Cerebral blood flow velocity patterns in post-hemorrhagic ventricular dilatation. Childs Nerv Syst 6:250–253

    Google Scholar 

  105. Lumsden CE (1950) Multiple cystic softenings of the brain in the newborn. J Neuropathol Exp Neurol 9:119–138

    Google Scholar 

  106. Lux WE, Hochwald GM, Sahar A, Ransohoff J (1970) Periventricular water content. Effect of pressure in experimental chronic hydrocephalus. Arch Neurol 23:475–479

    Google Scholar 

  107. Madara JL (1988) Tight junction dynamics: is paracellular transport regulated? Cell 53:497–498

    Google Scholar 

  108. Madhavi C, Jacob M (1990) Morphometry of choroid plexus in hydrocephalic guinea pigs. Indian J Med Res [B] 92:89–94

    Google Scholar 

  109. Madhavi C, Jacob M (1992) Morphometry of mitochondria in the choroidal ependyma of hydrocephalic guinea pigs. Indian J Med Res [B] 96:72–77

    Google Scholar 

  110. Maixner WJ, Morgan MK, Besser M, Johnston IH (1991) Ventricular volume in infantile hydrocephalus and its relationship to intracranial pressure and cerebrospinal fluid clearance before and after treatment. A preliminary study. Pediatr Neurosurg 16:191–196

    Google Scholar 

  111. Marburg O (1940) Hydrocephalus. Its symptomology, pathology, pathogenesis and treatment. Oskar Piest, New York, pp 217

    Google Scholar 

  112. Matsumae M, Sogabe T, Miura I, Sato O (1990) Energy metabolism in kaolin-induced hydrocephalic rat brain assessed by phosphorus (P31) magnetic resonance spectroscopy and the diversity of lactate dehydrogenase and its isoenzyme patterns. Childs Nerv Syst 6:392–396

    Google Scholar 

  113. McAllister JP, Maugans TA, Shah MV, Truex RC (1985) Neuronal effects of experimentally induced hydrocephalus in newborn rats. J Neurosurg 63:776–783

    Google Scholar 

  114. McAllister JP, Cohen MI, O'Mara KA, Johnson MH (1991) Progression of experimental infantile hydrocephalus and effects on ventriculoperitoneal shunts: an analysis correlating magnetic resonance imaging with gross morphology. Neurosurgery 29:329–340

    Google Scholar 

  115. McAllister JP, Morano RA, Ireland RA, Scroff DV, Hale PM, Kriebel RM (1992) Synaptic plasticity following early and late decompression for infantile hydrocephalus. Soc Neurosci 18:1316 [Abstr]

    Google Scholar 

  116. McLone DG, Bondareff W, Raimondi AJ (1973) Hydrocephalus-3, a murine mutant. II. Changes in the brain extracellular space. Surg Neurol 1:233–242

    Google Scholar 

  117. Meyer JS, Kitagawa Y, Tanahashi N, Tachibana H, Kandula P, Cech DA, Rose JE, Grossman RG (1985) Pathogenesis of normal-pressure hydrocephalus: preliminary observations. Surg Neurol 23:121–133

    Google Scholar 

  118. Milhorat TH, Clark RG, Hammock MK, McGrath PP (1970) Structural, ultrastructural, and permeability changes in the ependyma and surrounding brain favoring equilibration in progressive hydrocephalus. Arch Neurol 22:397–407

    Google Scholar 

  119. Miwa S, Inagaki C, Fujiwara M, Takaori S (1982) The activities of noradrenergic and dopaminergic neuron systems in experimental hydrocephalus. J Neurosurg 57:67–73

    Google Scholar 

  120. Miyagami M, Nakamura S, Murakami T, Koga N, Moriyasu M (1976) Electron microscopic study of ventricular wall and choroid plexus in experimentally induced hydrocephalic dogs. Neurol Med Chir (Tokyo) 16:15–21

    Google Scholar 

  121. Miyagami M, Shibuya T, Tsubokawa T (1991) Subependymal CSF absorption in hydrocephalic edema: ultrastructural localization of horseradish peroxidase and brain tissue damage. In: Matsumoto S, Tamaki N (eds) Hydrocephalus. Pathogenesis and treatment. Springer-Verlag, Tokyo, pp 181–194

    Google Scholar 

  122. Miyaoka M, Ito M, Wada M, Sato K, Ishii S (1988) Measurement of local cerebral glucose utilization before and after V-P shunt in congenital hydrocephalus in rats. Metab Brain Dis 3:125–132

    Google Scholar 

  123. Miyazawa T, Sato K (1991) Learning disability and impairment of synaptogenesis in HTX-rats with arrested shunt-dependent hydrocephalus. Child's Nerv Syst 7:121–128

    Google Scholar 

  124. Miyazawa T, Nishiye H, Sato K, Kobayashi R, Hattori S, Shirai T, Obata K (1992) Cortical synaptogenesis in congenitally hydrocephalic HTX-rats using monoclonal anti-synaptic vesicle protein antibody. Brain Dev 14:75–79

    Google Scholar 

  125. Moseley ME, Cohen Y, Kucharczyk J, Mintorovitch J, Asgari HS, Wendland MF, Tsuruda J, Norman D (1990) Diffusion-weighted MR imaging of anisotropic water diffusion in cat central nervous system. Radiology 176:439–445

    Google Scholar 

  126. Murata T, Handa H, Mori K, Nakano Y (1981) The significance of periventricular lucency on computed tomography: experimental study with camine hydrocephalus. Neuroradiology 20:221–227

    Google Scholar 

  127. Nakada J, Oka N, Nagahori T, Endo S, Takaku A (1992) Changes in the cerebrovascular bed in experimental hydrocephalus: and angio-architectural and histological study. Acta Neurochir (Wien) 114:43–50

    Google Scholar 

  128. Nakagawa Y, Cervos-Navarro J, Artigas J (1984) A possible paracellular route for resolution of hydrocephalic edema. Acta Neuropathol (Berl) 64:122–128

    Google Scholar 

  129. Nakagawa Y, Cervos-Navarro J, Artigas J (1985) Tracer study on a paracellular route in experimental hydrocephalus. Acta Neuropathol (Berl) 65:247–254

    Google Scholar 

  130. Nakamura S, Hochwald GM (1983) Effects of arterial pCO2 and cerebrospinal fluid volume flow rate changes on choroid plexus and cerebral blood flow in normal and experimental hydrocephalic cats. J Cereb Blood Flow Metab 3:369–375

    Google Scholar 

  131. Nicholson C (1989) Issues involved in the transmission of chemical signals through the brain extracellular space. Acta Morphol Neerl Scand 26:69–80

    Google Scholar 

  132. Oberbauer RW (1985) The significance of morphological details for developmental outcome in infantile hydrocephalus. Child's Nerv Syst 1:329–336

    Google Scholar 

  133. Ogata J, Hochwald GM, Cravioto H, Ransohoff J (1972) Light and electron microscopic studies of experimental hydrocephalus. Ependymal and subependymal areas. Acta Neuropathol (Berl) 21:213–223

    Google Scholar 

  134. Oi S, Ijichi A, Matsumoto S (1989) Immunohistochemical evaluation of neuronal maturation in untreated fetal hydrocephalus. Neurol Med Chir (Tokyo) 29:989–994

    Google Scholar 

  135. Oka N, Nakada JI, Endo S, Takaku A, Shinohara H, Morisawa S (1985) Angioarchitecture in experimental hydrocephalus. Neurol Med Chir (Tokyo) 25:701–706

    Google Scholar 

  136. Okuyama T, Hashi K, Sasaki S, Sudo K, Kurokawa Y (1987) Changes in cerebral microvasculature in congenital hydrocephalus of the inbred rat LEW/Jms: light and electron microscopic examination. Surg Neurol 27:338–342

    Google Scholar 

  137. Orton ST (1908) A pathological study of a case of internal hydrocephalus. Am J Insanity 65:229–278

    Google Scholar 

  138. Owman C, Rosengren E, West KA (1971) Influence of various intracranial pressure levels on the concentration of certain arylethylamines in rabbit brain. Experientia 27:1036–1037

    Google Scholar 

  139. Page LK (1985) Cerebrospinal fluid and extracellular fluid: their relationship to pressure and duration of canine hydrocephalus. Child's Nerv Syst 1:12–17

    Google Scholar 

  140. Page RB (1975) Scanning electron microscopy of the ventricular system in normal and hydrocephalic rabbits: preliminary report and atlas. J Neurosurg 42:646–664

    Google Scholar 

  141. Page RB, Leure-duPree AE (1983) Ependymal alterations in hydrocephalus. In: Wood JH (ed) Neurobiology of cerebrospinal fluid. Plenum Press, New York, pp 789–820

    Google Scholar 

  142. Page RB, Rosenstein JM, Dovey BJ, Leure-duPree AE (1979) Ependymal changes in experimental hydrocephalus. Anat Rec 194:83–104

    Google Scholar 

  143. Paula-Barbosa M, Ruela C, Faria R, Cruz C (1979) Nuclear bodies in nerve cells of two patients with normal-pressure hydrocephalus. Arch Neurol 36:648–649

    Google Scholar 

  144. Penfield W (1929) Notes on cerebral pressure atrophy. Res Publ Assoc Nerv Ment Dis 8:246–362

    Google Scholar 

  145. Penfield W, Elvidge AR (1932) Hydrocephalus and the atrophy of cerebral compression. In: Penfield W (ed) Cytology and cellular pathology of the nervous system. P.S. Hoebner, New York, pp 1201–1217

    Google Scholar 

  146. Penn RD, Bacus JW (1984) The brain as a sponge: a computed tomographic look at Hakim's hypothesis. Neurosurgery 14:670–675

    Google Scholar 

  147. Plets C (1986) Influence of experimental hydrocephalus on cerebral vascularization. In: Baethmann A, Go KG, Unterberg A (eds) Mechanisms of secondary brain damage. Plenum Press, New York, pp 169–178

    Google Scholar 

  148. Plets C, van den Bergh R (1973) L'influence de l'hydrocephalie experimentale sur la vascularisation cerebrale. Acta Neurol Belg 73:50–55

    Google Scholar 

  149. Pollay M, Curl F (1967) Secretion of cerebrospinal fluid by the ventricular ependyma of the rabbit. Am J Physiol 213:1031–1038

    Google Scholar 

  150. Privat A, LeBlond CP (1972) The subependymal layer and neighboring region in the brain of the young rat. J Comp Neurol 146:277–301

    Google Scholar 

  151. Pudenz RH (1981) The surgical treatment of hydrocephalus: an historical review. Surg Neurol 15:15–26

    Google Scholar 

  152. Raimondi AJ, Bailey OT, McLone DG, Lawson RF, Echeverry A (1973) The pathophysiology and morphology of murine hydrocephalus in Hy-3 and Ch mutants. Surg Neurol 1:50–55

    Google Scholar 

  153. Reigel H, Dallman DE, Scarff TB, Woodford J (1977) Transcephalic impedance measurement during infancy. Dev Med Child Neurol 19:295–304

    Google Scholar 

  154. Richards HK, Pickard JD, Punt J (1985) Local cerebral glucose utilization in experimental chronic hydrocephalus in the rat. Z Kinderchir 40 [Suppl 1]:9

    Google Scholar 

  155. Richards HK, Bucknall RM, Jones HC, Pickard JD (1989) The uptake of [14C]-deoxyglucose into brain of young rats with inherited hydrocephalus. Exp Neurol 103:194–198

    Google Scholar 

  156. Rosenberg GA, Saland L, Kyner WT (1983) Pathophysiology of periventricular tissue changes with raised CSF pressure in cats. J Neurosurg 59:606–611

    Google Scholar 

  157. Rosenthal A, Jouet M, Kenwrick S (1992) Aberrant splicing of neural cell adhesion molecule L1 mRNA in a family with X-linked hydrocephalus. Nature Genet 2:107–112

    Google Scholar 

  158. Rowlatt U (1978) The microscopic effects of ventricular dilatation without increase in head size. J Neurosurg 48:957–961

    Google Scholar 

  159. Rubin RC, Hochwald GM, Tiell M, Epstein F, Ghatak N, Wisniewski H (1976) Hydrocephalus. III. Reconstitution of the cerebral cortical mantle following ventricular shunting. Surg Neurol 5:179–183

    Google Scholar 

  160. Rubin RC, Hochwald GM, Tiell M, Liwnicz BH (1976) Hydrocephalus. II. Cell number and size, and myelin content of the pre-shunted cerebral cortical mantle Surg Neurol 5:115–118

    Google Scholar 

  161. Rubin RC, Hochwald GM, Tiell M, Mizutani H, Ghatak N (1976) Hydrocephalus. I. Histological and ultrastructural changes in the pre-shunted cortical mantle. Surg Neurol 5:109–114

    Google Scholar 

  162. Russell DS (1949) Observations on the pathology of hydrocephalus. Med Res Counc (GB) Spec Rep Ser 265:1–138

    Google Scholar 

  163. Sarnat HB (1992) Cerebral dysgenesis. Embryology and clinical expression. Oxford University Press, New York, pp 473

    Google Scholar 

  164. Sato H, Sato N, Tamaki N, Matsumoto S (1988) Threshold of cerebral perfusion pressure as a prognostic factor in hydrocephalus during infancy. Child's Nerv Syst 4:274–278

    Google Scholar 

  165. Sato O, Ohya M, Nojiri K, Tsugane R (1984) Microcirculatory changes in experimental hydrocephalus: morphological and physiological studies. In: Shapiro K, Marmarou A, Portnoy H (eds) Hydrocephalus. Raven Press, New York, pp 215–230

    Google Scholar 

  166. Schurr PH, McLaurin RL, Ingraham FD (1953) Experimental studies on the circulation of the cerebrospinal fluid and methods of producing communicating hydrocephalus in the dog. J Neurosurg 10:515–525

    Google Scholar 

  167. Shaywitz BA (1972) Brain inulin space in hydrocephalic and hyponatremic kittens using ventriculocisternal perfusion. Exp Neurol 34:16–24

    Google Scholar 

  168. Shenkin HA, Greenberg JO, Grossman CB (1975) Ventricular size after shunting for idiopathic normal pressure hydrocephalus. J Neurol Neurosurg Psychiatry 38:833–837

    Google Scholar 

  169. Shirai T, Ishii K (1991) Postnatal changes of HRP-labeled corticospinal neurons in congenital hydrocephalic rats (HTX). In: Matsumoto S, Tamaki N (eds) Hydrocephalus. Pathogenesis and treatment. Springer, Tokyo, p 36–45

    Google Scholar 

  170. Shukla D, Singh BM, Strobos RJ (1980) Hypertensive cerebrovascular disease and normal pressure hydrocephalus. Neurology 30:998–1000

    Google Scholar 

  171. Shuman CS, Bryan JHD (1985) Choroid plexus ultrastructure in hydrocephalic mutant mice. J Cell Biol 101:126a

    Google Scholar 

  172. Slaviero A (1932) Gliosi ependimale e collagenizzazione dei plessi corioidei in caso di blocco sperimentale dell acquedotto di Silvio. Pathologica 24:282–284

    Google Scholar 

  173. Sogabe T, Matsumae M, Sato O, Miura I (1989) Change in glucose metabolism with time in hydrocephalic rats. Biochem Int 19:513–518

    Google Scholar 

  174. Spoerri O, Alexy HJ (1974) The subfornical organ in murine hydrocephalus: a light microscopic study. Dev Med Child Neurol 16 [Suppl 32]:91–94

    Google Scholar 

  175. Stensaas SS, Edwards CQ, Stensaas LJ (1972) An experimental study of hyperchromic nerve cells in the cerebral cortex. Exp Neurol 36:472–487

    Google Scholar 

  176. Strecker EP, James AE, Konigsmark B, Merz T (1974) Autoradiographic observations in experimental communicating hydrocephalus. Neurology 24:192–197

    Google Scholar 

  177. Struck G, Hemmer R (1964) Elektronenmikroskopische Untersuchungen an der menschlichen Hirnrinde beim Hydrocephalus. Arch Psychiatr Nervenkr 206:17–27

    Google Scholar 

  178. Sutton LN, Wood H, Brooks BR, Barrer SJ, Kline M, Cohen SR (1983) Cerebrospinal fluid myelin basic protein in hydrocephalus. J Neurosurg 59:467–470

    Google Scholar 

  179. Suzuki F, Handa J, Maeda T (1992) Effects of congenital hydrocephalus on serotonergic input and barrel cytoarchitecture in the developing somatosensory cotex of rats. Child's Nerv Syst 8:18–24

    Google Scholar 

  180. Takei F, Shapiro K, Kohn I (1987) Influence of the rate of ventricular enlargement on the white matter water content in progressive feline hydrocephalus. J Neurosurg 66:577–583

    Google Scholar 

  181. Tamaki N, Yamashita H, Kimura M, Ehara K, Asada M, Nagashima T, Matsumoto S, Hashimoto M (1990) Changes in the components and content of biological water in the brain of experimental hydrocephalic rabbits. J Neurosurg 73:274–278

    Google Scholar 

  182. Thomas WS (1914) Experimental hydrocephalus. J Exp Med 19:106–119

    Google Scholar 

  183. Torvik A, Stenwig AE (1977) The pathology of experimental obstructive hydrocephalus. Electron microscopic observations. Acta Neuropathol (Berl) 38:21–26

    Google Scholar 

  184. Tsutsumi K, Niwa M, Himeno A, Kurihara M, Kawano T, Ibaragi M, Ozaki M, Mori K (1988) α. Atrial natriuretic peptide binding sites in the rat choroid plexus are increased in the presence of hydrocephalus. Neurosci Lett 87:93–98

    Google Scholar 

  185. Vanderkelen BJ, Brihaye J, Flament-Durand J (1975) Constatations anatomopathologiques dans un cas d'hydrocephalie normotensive. Acta Neurol Belg 75:279–287

    Google Scholar 

  186. Vessal K, Sperber EE, James AE (1974) Chronic communicating hydrocephalus with normal CSF pressures: a cisternographic-pathologic correlation. Ann Radiol (Paris) 17:785–793

    Google Scholar 

  187. Vorstrup S, Christensen J, Gjerris F, Sorensen PS, Thomsen AM, Paulson OB (1987) Cerebral blood flow in patients with normal-pressure hydrocephalus before and after shunting. J Neurosurg 66:379–387

    Google Scholar 

  188. Weller RO, Shulman K (1972) Infantile hydrocephalus: clinical, histological, and ultrastructural study of brain damage. J Neurosurg 36:255–265

    Google Scholar 

  189. Weller RO, Williams BN (1975) Cerebral biopsy and assessment of brain damage in hydrocephalus. Arch Dis Child 50:763–768

    Google Scholar 

  190. Weller RO, Wisniewski H (1969) Histological and ultrastructural changes in experimental hydrocephalus in adult rabbits. Brain 92:819–828

    Google Scholar 

  191. Weller RO, Wisniewski H, Shulman K, Terry RD (1971) Experimental hydrocephalus in young dogs: histological and ultrastructural study of brain tissue damage. J Neuropathol Exp Neurol 30:613–626

    Google Scholar 

  192. Weller RO, Mitchell J, Griffin RL, Gardner MJ (1978) The effects of hydrocephalus upon the developing brain. Histological and quantitative studies of the ependyma and subependyma in hydrocephalic rats. J Neurol Sci 36:383–402

    Google Scholar 

  193. Williamson EC, Pearson HE, McAllister JP (1992) Gliosis and ganglion cell death in the developing cat retina during hydrocephalus and after decompression. Dev Brain Res 70:47–50

    Google Scholar 

  194. Winston KR, Breeze RE (1991) Hydraulic regulation of brain parenchymal volume. Neurol Res 13:237–247

    Google Scholar 

  195. Wislocki GB, Putnam TJ (1921) Absorption from the ventricles in experimentally produced internal hydrocephalus. Am J Anat 29:313–320

    Google Scholar 

  196. Wisniewski H, Weller RO, Terry RD (1969) Experimental hydrocephalus produced by the subarachnoid infusion of silicone oil. J Neurosurg 31:10–14

    Google Scholar 

  197. Wisniewski HM, Popovitch ER, Kaufman MA, Wisniewski KE (1987) Neurofibrillary changes in advanced hydrocephalus A clinicopathological study. J Neuropathol Exp Neurol 46:340

    Google Scholar 

  198. Wolfgang CL, McAllister JP, Way JS (1992) Cortical neuronal protein synthetic capability in hydrocephalic and decompressed animals. Soc Neurosci 18:940 [Abstr]

    Google Scholar 

  199. Wozniak M, McLone DG, Raimondi AJ (1975) Micro-and macrovascular changes as the direct cause of parenchymal destruction im congenital murine hydrocephalus. J Neurosurg 43:535–545

    Google Scholar 

  200. Wright LC, McAllister JP, Katz SD, Miller DW, Lovely TJ, Salotto AG, Wolfson BJ (1991) Cytological and cytoarchitectural changes in the feline cerebral cortex during experimental infantile hydrocephalus. Pediatr Neurosurg 16:139–155

    Google Scholar 

  201. Yakovlev PI (1947) Paraplegias of hydrocephalus. A clinical note and interpretation. Am J Ment Defic 51:561–576

    Google Scholar 

  202. Yamada H, Yokota A, Furuta A, Horie A (1992) Reconstitution of shunted mantle in experimental hydrocephalus. J Neurosurg 76:856–862

    Google Scholar 

  203. Yinon U (1989) Hydrocephalus developed in cat: physiology of visual cortex cells. Clin Vision Sci 4:79–84

    Google Scholar 

  204. Yoshida Y, Koya G, Tamayama K, Kumanishi T, Abe S (1990) Histopathology of cystic cavities in the cerebral white matter of HTX rats with inherited hydrocephalus. Neurol Med Chir (Tokyo) 30:229–233

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Del Bigio, M.R. Neuropathological changes caused by hydrocephalus. Acta Neuropathol 85, 573–585 (1993). https://doi.org/10.1007/BF00334666

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00334666

Key words

Navigation