Skip to main content
Log in

Deceptive pollination of Dactylorhiza incarnata: an experimental test of the magnet species hypothesis

  • Original Paper
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Floral deception, which mainly appears in highly evolved families such as Orchidaceae, was studied in Central Finland. In nectarless Dactylorhiza incarnata, the deceptive pollination system has been considered to function best in remote habitats such as marshes, where flowering plants attractive to pollinators are rare (remote habitats hypothesis). In contrast, the magnet-species theory predicts that a nectarless plant benefits from growing in the vicinity of nectarcontaining species. We tested these hypotheses by adding attractive, nectar-containg violets (Viola x wittrockiana) to orchid populations. The percentage of fruit set in D. incarnata was adversely affected by the violets, probably because interspecific exploitation competition for pollinators took place in favour of the violas at the expense of the orchids. This result gave no support for the magnet-species theory and supported the remote habitats hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ackerman JD (1986) Mechanisms and evolution of food-deceptive pollination systems in orchids. Lindleyana 1: 108–113

    Google Scholar 

  • Dafni A (1983) Pollination of Orchis caspia-a nectarless plant species which deceives the pollinators of nectariferous species from other plant families. J Ecol 71: 467–474

    Google Scholar 

  • Dafni A (1984) Mimicry and deception in pollination. Annu Rev Ecol Syste 15: 259–278

    Google Scholar 

  • Dafni A, Woodell SRJ (1986) Stigmatic exudate and the pollination of Dactylorhiza fuchsii. Flora 178: 343–350

    Google Scholar 

  • Daumann E (1941) Dies anbohrbaren Gewebe und rudimentären Nektarien in der Blutenregion. Beih Bot Zentralbl 61: 12–82

    Google Scholar 

  • Firmage DH, Cole RF (1988) Reproductive success and inflorescence size of Calopogon tuberosa (Orchidaceae). Am J Bot 75: 1371–1377

    Google Scholar 

  • Free JB (1968) Dandelion as a competitor to fruit trees for bee visits. J Appl Ecol 5: 169–178

    Google Scholar 

  • Fritz A-L (1990) Deceit pollination of Orchis spitzelii (Orchidaceae) on the island of Gotland in the Baltic: a suboptimal system. Nord J Bot 9: 577–587

    Google Scholar 

  • Harder LD, Thomson JD (1989) Evolutionary option for maximizing pollen dispersal of animal-pollinated plants. Am Nat 133: 323–344

    Google Scholar 

  • Heinrich B (1975) Bee flowers: a hypothesis on flower variety and blooming times. Evolution 29: 325–334

    Google Scholar 

  • Heinrich B (1979) “Majoring” and “minoring” by foraging bumble-bees, Bombus vagans: an experimental analysis. Ecology 60: 245–255

    Google Scholar 

  • Heinrich B (1983) Insect foraging energetics. In: Jones CE, Little RJ (eds) Handbook of pollination biology. Van Nostrund Reinhold, New York, pp 187–248

    Google Scholar 

  • Kugler H (1935) Blutenökologische Untersuchungen mit Hummeln. VII. Die Anlocknung von “Neulingen” durch Bluten. Planta 23: 692–714

    Google Scholar 

  • Laverty TM (1992) Plant interaction for pollinator visits: a test of the magnet species effect. Oecologia 89: 502–508

    Google Scholar 

  • Laverty TM, Plowright RC (1988) Fruit and seed set in Mayapple (Podophyllum peltatum): influence of intraspecific factors and local enhancement near Pedicularis canadansis. Can J Bot 66: 173–178

    Google Scholar 

  • Little RJ (1983) A review of floral deception mimicries with comments on floral mutualism. In: Jones CE, Little RJ (eds) Handbook of pollination biology. Van Nostrand Reinhold, New York, pp 294–309

    Google Scholar 

  • Nilsson LA (1980) The pollination ecology of Dactylorhiza sambucina (Orchidaceae). Bot Notiser 133: 367–385

    Google Scholar 

  • Nilsson LA (1981) Pollination ecology and evolutionary process in six species of orchids. Abstr Upps Diss Fac Sci 593

  • Nilsson LA (1983) Mimesis of bellflower (Campanula) by the red helleborine orchid Cephalanthera rubra. Nature 305: 799–800

    Google Scholar 

  • Nilsson LA (1984) Anthecology of Orchis morio (Orchidaceae) at its outpost in the north. Nova Acta Regiae Soc Sci Ups C. 5. 3: 167–179

    Google Scholar 

  • Nilsson LA (1992) Orchid pollination biology. Trends Ecol Evol 7: 255–259

    Google Scholar 

  • Pellmyr O (1986) The pollination ecology of two nectarless Cimicifuga spp. (Ranunculaceae) in North America. Nord J Bot 6: 713–723

    Google Scholar 

  • Pleasants JM (1980) Competition for bumble-bee pollinators in Rocky Mountain plant communities. Ecology 61: 1446–1459

    Google Scholar 

  • Pleasants JM, Zimmerman M (1979) Patchiness in the dispersion of nectar resources: evidence for hot and cold spots. Oecologia 41: 283–288

    Google Scholar 

  • Rathcke B (1983) Competition and facilitation among plants for pollination. In: Real L (ed) Pollination biology. Academic Press, New York, pp 309–329

    Google Scholar 

  • Thomson JD (1978) Effect of stand composition on insect visitation in two-species mixtures of Hieracium. Am Midl Nat 100: 431–440

    Google Scholar 

  • Zimmerman M (1980) Reproduction in Polemonium: competition for pollinators. Ecology 61: 497–501

    Google Scholar 

  • Zimmerman M (1981a) Optimal foraging, plant density and the marginal value theorem. Oecologia 49: 148–153

    Google Scholar 

  • Zimmerman M (1981b) Patchiness in the dispersion of nectar resources: probable causes. Oecologia 49: 154–157

    Google Scholar 

  • Zimmerman M (1982a) The effect on nectar production on neigh-borhood-size. Oecologia 52: 104–108

    Google Scholar 

  • Zimmerman M (1982b) Optimal foraging: random movement by pollen collecting bumble-bees. Oecologia 53: 394–398

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lammi, A., Kuitunen, M. Deceptive pollination of Dactylorhiza incarnata: an experimental test of the magnet species hypothesis. Oecologia 101, 500–503 (1995). https://doi.org/10.1007/BF00329430

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00329430

Key words

Navigation