Skip to main content
Log in

Immunocytochemical localization of pheromone-binding protein in moth antennae

  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Summary

Odorant-binding proteins are supposed to play an important role in stimulus transport and/or inactivation in olfactory sense organs. In an attempt to precisely localize pheromone-binding protein in the antenna of moths, post-embedding immunocytochemistry was performed using an antiserum against purified pheromone-binding protein of Antheraea polyphemus. In immunoblots of antennal homogenates, the antiserum reacted exclusively with pheromone-binding protein of A. polyphemus, and cross-reacted with homologous proteins of Bombyx mori and Autographa gamma. On sections of antennae of male A. polyphemus and B. mori, exclusively the pheromone-sensitive sensilla trichodea are labelled; in A. gamma, label is restricted to a subpopulation of morphologically similar sensilla trichodea, which indicates that not all pheromone-sensitive sensilla contain the same type of pheromone-binding protein and accounts for a higher specificity of pheromone-binding protein than hitherto assumed. Within the sensilla trichodea, the extracellular sensillum lymph of the hair lumen and of the sensillum-lymph cavities is heavily labelled. Intracellular label is mainly found in the trichogen and tormogen cells: in endoplasmic reticulum, Golgi apparatus, and a variety of dense granules. Endocytotic pits and vesicles, multivesicular bodies and lysosome-like structures are also labelled and can be observed not only in these cells, but also in the thcogen cell and in the receptor cells. Cell membranes are not labelled except the border between thecogen cell and receptor cell and the autojunction of the thecogen cell. The intracellular distribution of label indicates that pheromone-binding protein is synthesized in the tormogen and trichogen cell along typical pathways of protein secretion, whereas its turnover and decomposition does not appear to be restricted to these cells but may also occur in the thecogen and receptor cells. The immunocytochemical findings are discussed with respect to current concepts of the function of pheromone-binding protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Arn H, Tóth M, Priesner E (1986) List of sex pheromones of Lepidoptera and related attractants. OILB-SROP, Paris

    Google Scholar 

  • Batteiger B, Newhall WJ, Jones RB (1982) The use of Tween 20 as a blocking agent in the immunological detection of proteins transferred to nitrocellulose membranes. J Immunol Methods 55:297–307

    Google Scholar 

  • Boeckh J, Kaißling K-E, Schneider D (1960) Sensillen und Bau der Antennengeißel von Telea polyphemus (Vergleiche mit weiteren Saturniden: Antheraea, Platysamia und Philosamia). Zool Jb Anat 78:559–584

    Google Scholar 

  • Boeckh J, Kaissling K-E, Schneider D (1965) Insect olfactory receptors. Cold Spring Harb Symp Quant Biol 30:263–280

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Google Scholar 

  • Breer H, Krieger J, Raming K (1990) A novel class of binding proteins in the antennae of the silk moth Antheraea pernyi. Insect Biochem 20:735–740

    Google Scholar 

  • Danscher G (1981) Localization of gold in biological tissue ... a photochemical method for light and electronmicroscopy. Histochemistry 71:81–88

    Google Scholar 

  • Dunkelblum E, Gothilf S (1983) Sex pheromone components of the gamma moth, Autographa gamma (L.) (Lepidoptera: Noctuidae). Z Naturforsch 38c:1011–1014

    Google Scholar 

  • Ernst K-D (1969) Die Feinstruktur von Riechsensillen auf der Antenne des Aaskäfers Necrophorus (Coleoptera). Z Zellforsch Mikrosk Anat 94:72–102

    Google Scholar 

  • Getchell TV, Margolis FL, Getchell ML (1984) Perireceptor and receptor events in vertebrate olfaction. Prog Neurobiol 23:317–345

    Google Scholar 

  • Gnatzy W, Mohren W, Steinbrecht RA (1984) Pheromone receptors in Bombyx mori and Antheraea pernyi. II. Morphometric analysis. Cell Tissue Res 235:35–42

    Google Scholar 

  • Györgyi TK, Roby-Shemkovitz AJ, Lerner MR (1988) Characterization and cDNA cloning of the pheromone-binding protein from the tobacco hornworm, Manduca sexta: a tissue-specific developmentally regulated protein. Proc Natl Acad Sci USA 85:9851–9855

    Google Scholar 

  • Heinbockel T, Kaissling K-E (1990) Sensitivity and inhibition of antennal benzoic-acid receptor cells of female silkmoth Bombyx mori L. Verh Dtsch Zool Ges 83:411

    Google Scholar 

  • Henke K (1953) Über Zelldifferenzierung im Intergument der Insekten und ihre Bedingungen. J Embryol Exp Morphol 1:217–226

    Google Scholar 

  • Kaissling K-E (1986) Chemo-electrical transduction in insect olfactory receptors. Annu Rev Neurosci 9:121–145

    Google Scholar 

  • Kaissling K-E (1987) R.H Wright lectures on insect olfaction. Simon Fraser University, Burnaby, Canada

    Google Scholar 

  • Kaissling K-E, Priesner E (1970) Die Riechschwelle des Seidenspinners. Naturwissenschaften 57:23–28

    Google Scholar 

  • Kanaujia S, Kaissling K-E (1985) Interactions of phermone with moth antennae: adsorption, desorption and transport. J Insect Physiol 31:71–81

    Google Scholar 

  • Kasang G, Kaissling K-E (1972) Specificity of primary and secondary olfactory processes in Bombyx antennae. In: Schneider D (ed) Olfaction and taste IV. Wissenschaftliche Verlagsgesellschaft, Stuttgart, pp 200–206

    Google Scholar 

  • Kasang G, Proff L von, Nicholls M (1988) Enzymatic conversion and degradation of sex pheromoes in antennae of the male silkworm moth Antheraea polyphemus. Z Naturforsch 43c:275–284

    Google Scholar 

  • Kasang G, Nicholls M, von Proff L (1989) Sex pheromone conversion and degradation in antennae of the silkworm moth Bombyx mori L. Experientia 45:81–87

    Google Scholar 

  • Keil TA (1982) Contacts of pore tubules and sensory dendrites in antennal chemosensilla of a silkmoth: demonstration of a possible pathway for olfactory molecules. Tissue Cell 14:451–462

    Google Scholar 

  • Keil TA (1984a) Reconstruction and morphometry of silkmoth olfactory hairs: a comparative study of sensilla trichodea on the antennae of male Antheraea polyphemus and Antheraea pernyi (Insecta, Lepidoptera). Zoomorphology 104:147–156

    Google Scholar 

  • Keil TA (1984b) Surface coats of pore tubules and olfactory sensory dendrites of a silkmoth revealed by cationic markers. Tissue Cell 16:705–717

    Google Scholar 

  • Keil TA (1989) Fine structure of the pheromone-sensitive sensilla on the antenna of the hawkmoth, Manduca sexta. Tissue Cell 21:139–151

    Google Scholar 

  • Keil TA, Steinbrecht RA (1984) Mechanosensitive and olfactory sensilla of insects. In: King RC, Akai H (eds) Insect ultrastructure, vol 2. Plenum, New York, pp 477–516

    Google Scholar 

  • Keil TA, Steinbrecht RA (1987) Diffusion barriers in silkmoth sensory epithelia: application of lanthanum tracer to olfactory sensilla of Antheraea polyphemus and Bombyx mori. Tissue Cell 19:119–134

    Google Scholar 

  • Keil TA, Steiner C (1991) Morphogenesis of the antenna of the male silkmoth, Antheraea polyphemus. III. Development of olfactory sensilla and the properties of hairforming cells. Tissue Cell 23:821–851

    Google Scholar 

  • Kelly RB (1985) Pathways of protein secretion in eukaryotes. Science 230:25–32

    Google Scholar 

  • Kemler R, Schwarz H (1989) Ultrastructural localization of the cell adhesion molecule uvomorulin using site-directed antibodies. In: Laat SW de, Bluemink JG, Mummery CR (eds) Cell to cell signals in mammalian development. NATO ASI Series, vol 26 Springer, Berlin Heidelberg, pp 145–152

    Google Scholar 

  • Klein U (1987) Sensillum-lymph proteins from antennal olfactory hairs of the moth Antheraea polyphemus (Saturniidae). Insect Biochem 17:1193–1204

    Google Scholar 

  • Krieger J, Raming K, Breer H (1991) Cloning of genomic and complementary DNA encoding insect pheromone binding proteins: evidence for microdiversity. Biochim Biophys Acta 1088:277–284

    Google Scholar 

  • Kyhse-Andersen J (1984) Electroblotting of multiple gels: a simple apparatus without buffer tank for rapid transfer of proteins from polyacrylamide to nitrocellulose. J Biochem Biophys Methods 10:203–209

    Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Google Scholar 

  • Meng LZ, Wu CH, Wicklein M, Kaissling K-E, Bestmann HJ (1989) Number and sensitivity of three types of pheromone receptor cells in Antheraea pernyi and Antheraea polyphemus. J Comp Physiol [A] 165:139–146

    Google Scholar 

  • Palade G (1975) Intracellular aspects of the process of protein synthesis. Science 189:347–358

    Google Scholar 

  • Pelosi P, Baldaccini NE, Pisanelli AM (1982) Identification of a specific olfactory receptor for 2-isobutyl-3-methoxypyrazine. Biochem J 201:245–248

    Google Scholar 

  • Pevsner J, Snyder SH (1990) Odorant-binding protein: odorant transport function in the vertebrate nasal epithelium. Chem Senses 15:217–222

    Google Scholar 

  • Pevsner J, Sklar PB, Snyder SH (1986) Odorant-binding protein: localization to nasal glands and secretions. Proc Natl Acad Sci USA 83:4942–4946

    Google Scholar 

  • Pevsner J, Reed RR, Feinstein PG, Snyder SH (1988) Molecular cloning of odorant-binding protein: member of a ligand carrier family. Science 241:336–339

    Google Scholar 

  • Plattner H (1989) Regulation of membrane fusion during exocytosis. Int Rev Cytol 119:197–286

    Google Scholar 

  • Priesner E (1979) Progress in the analysis of pheromone receptor systems. Ann Zool Ecol Anim 11:533–546

    Google Scholar 

  • Priesner E (1980) Sensory encoding of pheromone signals and related stimuli in male moths. In: Insect neurobiology and insecticide action (Neurotox 79). Society of Chemical Industry, London, pp 359–366

    Google Scholar 

  • Raming K, Krieger J, Breer H (1989) Molecular cloning of an insect pheromone-binding proteins, FEBS Letters 256:215–218

    Google Scholar 

  • Raming K, Krieger J, Breer H (1990) Primary structure of a pheromone-binding protein from Antheraea pernyi: homologies with other lignad-carrying proteins. J Comp Physiol [B] 160:503–509

    Google Scholar 

  • Schneider D (1984) Insect olfaction—Our research endeavor. In: Dawson WW, Enoch JM (eds) Foundations of sensory science. Springer, Berlin Heidelberg New York, pp 381–418

    Google Scholar 

  • Schneider D, Kaißling K-E (1957) Der Bau der Antenne des Seidenspinners Bombyx mori L. II Sensillen, cuticulare Bildungen und innerer Bau. Zool Jb Anat 76:223–250

    Google Scholar 

  • Schneider D, Lacher V, Kaissling K-E (1964) Die Reaktionsweise und das Reaktionspektrum von Riechzellen bei Antheraea pernyi (Lepidoptera, Saturniidae). Z Vergl Physiol 48:632–662

    Google Scholar 

  • Steinbrecht RA (1969) Comparative morphology of olfactory receptors. In: Pfaffman C (ed) Olfaction and taste III. Rockefeller University Press, New York, pp 3–21

    Google Scholar 

  • Steinbrecht RA (1970) Zur Morphometrie der Antenne des Seidenspinners, Bombyx mori L: Zahl und Verteilung der Riechsensillen (Insecta, Lepidoptera). Z Morph Tiere 68:93–126

    Google Scholar 

  • Steinbrecht RA (1973) Der Feinbau olfaktorischer Sensillen des Seidenspinners (Insecta, Lepidoptera): Rezeptorfortsätze und reizleitender Apparat. Z Zellforsch Mikrosk Anat 139:533–565

    Google Scholar 

  • Steinbrecht RA (1980) Cryofixation without cryoprotectants. Freeze substitution and freeze etching of an insect olfactory receptor. Tissue Cell 12:73–100

    Google Scholar 

  • Steinbrecht RA (1984) Chemo-, hygro-, and thermoreceptors. In: Bereiter-Hahn J, Matoltsy AG, Richards KS (eds) Biology of the integument, vol 1: Invertebrates. Springer, Berlin Heidelberg New York, pp 523–553

    Google Scholar 

  • Steinbrecht RA (1985) Recrystallization and ice-crystal growth in a biological specimen, as shown by a simple freeze substitution method. J Microsc 140:41–46

    Google Scholar 

  • Steinbrecht RA (1987) Functional morphology of pheromone-sensitive sensilla. In: Prestwich GD, Blomquist GJ (eds) Pheromone biochemistry. Academic Press, Orlando, pp 353–384

    Google Scholar 

  • Steinbrecht RA (1992a) Experimental morphology of insect olfaction — tracer studies, X-ray microanalysis, autoradiography, and immunocytochemistry with silkmoth antennae. J Electron Microsc Res Techn (in press)

  • Steinbrecht RA (1992b) Stimulus transport and inactivation in insect olfactory sensilla-functional morphology, tracer experiments, and immunocytochemistry. In: Singh RN (ed) Neurobiology: principles of design and function. Wiley Eastern, New Delhi, pp 417–436

    Google Scholar 

  • Steinbrecht RA (1992c) Freeze-substitution for morphological and immunocytochemical studies in insects. J Electron Microsc Res Techn, in press

  • Steinbrecht RA, Gnatzy W (1984) Pheromone receptors in Bombyx mori and Antheraea pernyi. I. Reconstruction of the cellular organization of the sensilla trichodea. Cell Tissue Res 235:25–34

    Google Scholar 

  • Steinbrecht RA, Müller B (1971) On the stimulus conducting structures in insect olfactory receptors. Z Zellforsch Mikrosk Anat 117:570–575

    Google Scholar 

  • Steinbrecht RA, Keil TA, Ozaki M, Maida R, Ziegelberger G (1991) Immunocytochemistry of pheromone binding protein. In: Elsner N, Penzlin H (eds) Synapse-Transmission-Modulation, Proceedings of the 19th Göttingen neurobiology Conference. Thieme, Stuttgart New York, p 172

    Google Scholar 

  • Thurm U, Küppers J (1980) Epithelial physiology of insect sensilla. In: Locke M, Smith DS (eds) Insect biology in the future. Academic Press, New York, pp 735–763

    Google Scholar 

  • Van den Berg MJ, Ziegelberger G (1991) On the function of the pheromone binding protein in the olfactory hairs of Antheraea polyphemus. J Insect Physiol 37:79–85

    Google Scholar 

  • Vogt RG (1987) The molecular basis of pheromone reception: its influence on behavior. In: Prestwich GD, Blomquist GJ (eds) Pheromone biochemistry. Academic Press, Orlando, pp 385–431

    Google Scholar 

  • Vogt RG, Riddiford LM (1981) Pheromone binding and inactivation by moth antennae. Nature 293:161–163

    Google Scholar 

  • Vogt RG, Riddiford LM (1986) Pheromone reception: a kinetic equilibrium. In: Payne TL, Birch MC, Kennedy CEJ (eds) Mechanisms in insect olfaction. Clarendon, Oxford, pp 201–208

    Google Scholar 

  • Vogt RG, Riddiford LM, Prestwich GD (1985) Kinetic properties of a sex pheromone-degrading enzyme: the sensillar esterase of Antheraea polyphemus. Proc Natl Acad Sci USA 82:8827–8831

    Google Scholar 

  • Vogt RG, Köhne AC, Dubnau JT, Prestwich GD (1989) Expression of pheromone binding proteins during antennal development in the gypsy moth Lymantria dispar. J Neuroscience 9:3332–3346

    Google Scholar 

  • Vogt RG, Prestwich GD, Lerner MR (1991) Odorant-binding-protein subfamilies associate with distinct classes of olfactory receptor neurons in insects. J Neurobiol 22:74–84

    Google Scholar 

  • Williams JLD (1988) Nodes on the large pheromone-sensitive dendrites of olfactory hairs of the male silkmoth, Antheraea polyphemus (Cramer) (Lepidoptera: Saturniidae). Int J Insect Morphol Embryol 17:145–151

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steinbrecht, R.A., Ozaki, M. & Ziegelberger, G. Immunocytochemical localization of pheromone-binding protein in moth antennae. Cell Tissue Res 270, 287–302 (1992). https://doi.org/10.1007/BF00328015

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00328015

Key words

Navigation