Skip to main content
Log in

Oxidation of organic compounds to CO2 with sulfur or thiosulfate as electron acceptor in the anaerobic hyperthermophilic archaea Thermoproteus tenax and Pyrobaculum islandicum proceeds via the citric acid cycle

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The oxidation of organic compounds with elemental sulfur or thiosulfate as electron acceptor was studied in the anaerobic hyperthermophilic archaea Thermoproteus tenax and Pyrobaculum islandicum. T. tenax was grown on either glucose or casamino acids and sulfur; P. islandicum on peptone and either elemental sulfur or thiosulfate as electron acceptor. During exponential growth only CO2 and H2S rather than acetate, alanine, lactate, and succinate were detected as fermentation products of both organisms; the ratio of CO2/H2S formed was 1:2 with elemental sulfur and 1:1 with thiosulfate as electron acceptor. Cell extracts of T. tenax and P. islandicum contained all enzymes of the citric acid cycle in catabolic activities: citrate synthase, aconitase, isocitrate dehydrogenase (NADP+-reducing), oxoglutarate: benzylviologen oxidoreductase, succinyl-CoA synthetase, succinate dehydrogenase, fumarase and malate dehydrogenase (NAD+-reducing). Carbon monoxide dehydrogenase activity was not detected. We conclude that in T. tenax and P. islandicum organic compounds are completely oxidized to CO2 with sulfur or thiosulfate as electron acceptor and that acetyl-CoA oxidation to CO2 proceeds via the citric acid cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Anfinsen CB (1955) Aconitase from pig heart muscle. In: Colowick SP, Kaplan NO (eds) Methods in enzymology, vol 1 Academic Press, New York, pp 695–698

    Google Scholar 

  • Beh M, Strauss G, Huber R, Stetter K-O, Fuchs G (1993) Enzymes of the reductive citric acid cycle in the autotrophic eubacterium Aquifex pyrophilus and in the archaebacterium Thermoproteus neutrophilius. Arch Microbiol 160:306–311

    Google Scholar 

  • Bergmeyer HU, Gawehn K, Graßl M (1974) Enzyme als biologische Reagentien. In: Bergmeyer HU (ed) Methoden der enzymatischen Analyse, vol 1. Verlag Chemie, Weinheim, pp 454–558

    Google Scholar 

  • Bernt E, Bergmeyer HU (1974) Isocitrate-dehydrogenase. In: Bergmeyer HU (ed) Methoden der enzymatischen Analyse, vol 1. Verlag Chemie, Weinheim, pp 664–667

    Google Scholar 

  • Beutler HO (1985) Succinate. In: Bergmeyer HU (ed) Methods of enzymatic analysis, vol 7. Verlag Chemie, Weinheim, pp 25–33

    Google Scholar 

  • Bock A-K, Prieger-Kraft A, Schönheit P (1984) Pyruvate—a novel substrate for growth and methane formation in Methanosarcina barkeri. Arch Microbiol 161:33–46

    Google Scholar 

  • Bode C, Goebell H, Stähler E (1968) Zur Eliminierung von Trübungsfehlern bei der Eiweißbestimmung mit der Biuretmethode. Z Klin Chem Klin Biochem 5:418–422

    Google Scholar 

  • Bonch-Osmolovskaya EA, Miroshnichenko ML, Kostrikina NA, Chernych NA, Zavarzin GA (1990a) Thermoproteus uzoniensis sp nov, a new extremely thermophilic archaebacterium from Kamchatka continental hot springs. Arch Microbiol 154:556–559

    Google Scholar 

  • Bonch-Osmolovakaya EA, Sokolova TG, Kostrikina NA, Zavarzin GA (1990b) Desulfurella acetivorans gen nov and sp nov—a new thermophilic sulfur-reducing eubacterium. Arch Microbiol 153:151–155

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Google Scholar 

  • Brandis-Heep A, Gebhard NA, Thauer RK, Widdel F, Pfenning N (1983) Anaerobic acetate oxidation to CO2 by Desulfurobacter postgatei. Arch Microbiol 136:222–229

    Google Scholar 

  • Cline JD (1969) Spectrometric determination of hydrogen sulfide in natural waters. Limnol Oceanogr 14:454–458

    Google Scholar 

  • Danson MJ (1993) Central metabolism of the archaea. New Compr Biochem 26:1–24

    Google Scholar 

  • Dorn M, Andreesen JR, Gottschalk G (1978) Fermentation of fumarate and l-malate by Clostridium formicoaceticum. J Bacteriol 133:26–32

    Google Scholar 

  • Fischer F, Zillig W, Stetter KO, Schreiber G (1983) Chemolithoautotrophic metabolism of anaerobic extremely thermophilic archaeabacteria. Nature 301:511–313

    Google Scholar 

  • Gebhardt NA, Thauer RK, Linder D, Kaulfers P-M, Pfennig N (1985) Mechanism of acetate oxidation to CO2 with elemental sulfur in Desulfuromonas acetoxidans. Arch Microbiol 141: 392–398

    Google Scholar 

  • Graßl M, Supp M (1985) Alanine: determination with alanineaminotransferase and lactate dehydrogenase. In: Bergmeyer HU (ed) Methods of enzymatic analysis, vol 8. Verlag Chemie, Weinheim, pp 345–349

    Google Scholar 

  • Hensel R, Laumann S, Lang J, Heumann H, Lottspeich F (1987) Characterization of two d-glyceraldehyde-3-phosphate dehydrogenases from the extremely thermophilic archaebacterium Thermoproteus tenax. Eur J Biochem 170:325–333

    Google Scholar 

  • Huber R, Kristjansson JK, Stetter KO (1987) Pyrobaculum gen nov, a new genus of neutrophilic, rod-shaped archaebacteria from continental solfataras growing optimally at 100°C. Arch Microbiol 149:95–101

    Google Scholar 

  • Kandler O (1993) Archaea (Archaebacteria). Prog Botany 54:1–23

    Google Scholar 

  • Kerscher L, Osterhelt D (1982) Pyruvate: ferredoxin oxidoreductase — new finding on an ancient enzyme. Trends Biochem Sci 7:371–374

    Google Scholar 

  • Miroshnichenko ML, Gongadze GA, Lysenko AM, Bonch-Osmolovskaya EA (1994) Desulfurella multipotens sp nov, a new sulfur-respiring thermophilic eubacterium from Raoul Island (Kermadec archipelago, New Zealand) Arch Microbiol 161: 88–93

    Google Scholar 

  • Möller-Zinkhan D, Thauer RK (1990) Anaerobic lactate oxidation to 3 CO2 by Archaeoglobus fulgidus via the carbon monoxide dehydrogenase pathway: demonstration of the acetyl-CoA carbon-carbon cleavage reaction in cell extracts. Arch Microbiol 153:215–218

    Google Scholar 

  • Pfennig N, Biebl H (1976) Desulfuromonas acetoxidans gen nov and sp nov, a new anaerobic, sulfur-reducing, acetate-oxidizing bacterium. Arch Microbiol 110:3–12

    Google Scholar 

  • Schäfer T, Schönheit P (1991) Pyruvate metabolism of the hyperthermophilic archaebacterium Pyrococcus furiosus. Acetate formation from acetyl-CoA and ATP synthesis are catalyzed by an acetyl-CoA synthetase (ADP-forming) Arch Microbiol 155: 366–377

    Google Scholar 

  • Schäfer T, Schönheit P (1992) Maltose fermentation to acetate, CO2 and H2 in the anaerobic hyperthermophilic archaeon Pyrococcus furiosus: evidence for the operation of a novel sugar fermentation pathway. Arch Microbiol 158:188–202

    Google Scholar 

  • Schäfer S, Barkowski C, Fuchs G (1986) Carbon assimilation by the autotrophic thermophilic archaebacterium Thermoproteus neutrophilus. Arch Microbiol 146:301–308

    Google Scholar 

  • Schäfer T, Selig M, Schönheit P (1993) Acetyl-CoA synthetase (ADP-forming) in archaea, a novel enzyme involved in acetate formation and ATP synthesis. Arch Microbiol 159:72–83

    Google Scholar 

  • Schauder R, Kröger A (1993) Bacterial sulphur respiration. Arch Microbiol 159:491–497

    Google Scholar 

  • Schauder R, Eikmanns B, Thauer RK, Widdel F, Fuchs G (1986) Acetate oxidation to CO2 in anaerobic bacteria via a novel pathway not involving reactions of the citric acid cycle. Arch Microbiol 145:162–172

    Google Scholar 

  • Schauder R, Widdel F, Fuchs G (1987) Carbon assimilation pathway in sulfate-reducing bacteria. 2. Enzymes of the reductive citric acid cycle in the autotrophic Desulfobacter hydrogenophilus. Arch Microbiol 148:218–255

    Google Scholar 

  • Schmitz RA, Bonch-Osmolovskaya EA, Thauer RK (1990) Different mechanisms of acetate activation in Desulfurella acetivorans and Desulfuromonas acetoxidans. Arch Microbiol 154: 274–279

    Google Scholar 

  • Schönheit P, Wäscher C, Thauer RK (1978) A rapid procedure for the purification of ferredoxin from Clostridium pasteurianum using polyethyleneimine. FEBS Lett 89:219–222

    Google Scholar 

  • Shiba H, Kawasumi T, Igarashi Y, Kodoma T, Minoda Y (1985) The Co2 assimilation via the reductive tricarboxylic acid cycle in an obligately autotrophic aerobic hydrogen-oxidizing bacterium, Hydrogenobacter thermophilus. Arch Microbiol 142: 198–203

    Google Scholar 

  • Siebers B, Hensel R (1993) Glucose catabolism of the hyperthermophilic archaeum Thermoproteus tenax. FEMS Microbiol Lett 111:1–8

    Google Scholar 

  • Stetter KO (1993) Life at the upper temperature border. In: Tran Thanh Van J, Tran Thanh Van K, Mounolou JC, Schneider J, McKay C. Colloque Interdisciplinare du Comité de la Recherche Scientifique, Frontiers of life, C55. Edition Frontiers, Gif-sur-Yvette, pp 195–219

    Google Scholar 

  • Stetter KO, Lauerer G, Thomm M, Neuner A (1987) Isolation of extremely thermophilic sulfate-reducers: evidence for a novel branch of archaebacteria. Science 236:822–824

    Google Scholar 

  • Stetter KO, Fiala G, Huber G, Huber R, Segerer A (1990) Hyperthermophilic microorganisms. FEMS Microbiol Rev 75:117–124

    Google Scholar 

  • Thauer RK (1988) Citric-acid cycle, 50 years on. Modifications and an alternative pathway in anaerobic bacteria. Eur J Biochem 179:497–508

    Google Scholar 

  • Thauer RK, Möller-Zinkhan D, Spormann A (1989) Biochemistry of acetate catabolism in anaerobic chemotrophic bacteria. Annu Rev Microbiol 43:43–67

    Google Scholar 

  • Thurl S, Buhrow I, Schäfer W (1985) Quinones from archaebacteria. I. New types of menaquinones from the thermophilic archaebacterium Thermoproteus tenax. Biol Chem Hoppe Seyler 366:1079–1083

    Google Scholar 

  • Tindall BJ (1989) Fully saturated menaquinones in the archaebacterium Pyrobaculum islandicum. FEMS Microbiol Let 60: 251–254

    Google Scholar 

  • Wächtershäuser G (1990) Evolution of the first metabolic cycles. Proc Natl Acad Sci USA 87:200–204

    Google Scholar 

  • Weissbach A, Hurwitz J (1959) The formation of 2-keto-3-deoxyheptonic acid in extracts of Escherichia coli. Br J Biol Chem 234:705–709

    Google Scholar 

  • Widdel F, Pfennig N (1981) Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. I. Isolation of new sulfate-reducing bacteria enriched with acetate from saline environments. Description of Desulfobacter postgatei gen nov, sp nov. Arch Microbiol 129:395–400

    Google Scholar 

  • Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms: proposal for the domains archaea, bacteria, and eucarya. Proc Natl Acad Sci USA 87:4576–4579

    Google Scholar 

  • Zillig W, Stetter KO, Schäfer W, Janekovic D, Wunderl S, Holz I, Palm P (1981) Thermoproteales: a novel type of extremely thermoacidophilic anaerobic archaebacteria isolated from Islandic solfataras. Zentralbl Bakteriol Hyg C2:205–227

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Selig, M., Schönheit, P. Oxidation of organic compounds to CO2 with sulfur or thiosulfate as electron acceptor in the anaerobic hyperthermophilic archaea Thermoproteus tenax and Pyrobaculum islandicum proceeds via the citric acid cycle. Arch. Microbiol. 162, 286–294 (1994). https://doi.org/10.1007/BF00301853

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00301853

Key words

Navigation