Skip to main content
Log in

Structure and organization of rhodophyte and chromophyte plastid genomes: implications for the ancestry of plastids

Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

Plastid genomes of two rhodophytes (Porphyra yezoensis and Griffithsia pacifica) and two chromophytes (Olisthodiscus luteus and Ochromonas danica) were compared with one another and with green plants in terms of overall structure, gene complement and organization. The rhodophyte genomes are moderately co-linear in terms of gene organization, and are distinguished by three rearrangements that can most simply be explained by transpositions and a large (approximately 40 kb) inversion. Porphyra contains two loci for ppcBA and Griffithsia has two loci for rpoA. Although there is little similarity in gene organization between the rhodophytes and consensus green plant genome, certain gene clusters found in green plants appear to be conserved in the rhodophytes. The chromophytes Olisthodiscus and Ochromonas contain relatively large plastid inverted repeats that encode several photosynthetic genes in addition to the rRNA genes. With the exception of rbcS, the plastid gene complement in Olisthodiscus is similar to that of green plants, at least for the subset of genes tested. The Ochromonas genome, in contrast, appears unusual in that several of the green plant gene probes hybridizing to Olisthodiscus DNA did not detect similar sequences in Ochromonas DNA. Gene organization within the chromophytes is scrambled relative to each other and to green plants, despite the presence of putatively stabilizing inverted repeats. However, some gene clusters conserved in green plants and rhodophytes are also present in the chromophytes. Comparison of the entire rhodophyte, chromophyte and green plant plastid genomes suggests that despite diferences in gene organization, there remain overall similarities in architecture, gene content, and gene sequences among in three lineages. These similarities are discussed with reference to the ancestry of the different plastid types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alt J, Morris J, Westhoff P, Herrmann RG (1984) Nucleotide sequence of the clustered genes for the 44 kD chlorophyll a apoprotein and the “32 kD” like protein of the Photosystem II reaction center in the spinach plastid chromosome. Curr Genet 8:597–606

    Google Scholar 

  • Assali N-E, Mache R, Loiseaux-de Goër S (1990) Evidence for a composite phylogenetic origin of the plastid genome of the brown alga Pylaiella littoralis (L.) Kjellm. Plant Mol Biol 15:307–315

    Google Scholar 

  • Baldauf SL, Palmer JD (1990) Evolutionary transfer of the chloroplast tufA gene to the nucleus. Nature 344:262–265

    Google Scholar 

  • Bancroft I, Wolk CP, Oren EV (1989) Physical and genetic maps for the genome of the heterocyst forming cyanobacterium Anabaena sp. strain PCC 7120. J Bacteriol 171:5940–5948

    Google Scholar 

  • Boczar BA, Delaney T, Cattolico RA (1989) The gene for the ribulose-1,5-bisphosphate carboxylase (Rubisco) small subunit protein of the marine chromophyte Olisthodiscus luteus is similar to that of a chemoautotrophic bacterium. Proc Natl Acad Sci USA 86:4996–4999

    Google Scholar 

  • Bold HC, Wynne MJ (1985) Introduction to the algae. Prentice Hall, Engelwood Cliffs, New Jersey

    Google Scholar 

  • Boyen C, Somerville CC, Le Gall Y, Kloareg B, De Goër (1991) Physical mapping of the plastid genome from the rhodophyte Chondrus crispus. J Phycol 27:11

    Google Scholar 

  • Bryant DA, DeLorimer R, Lambert DH, Dubbs JM, Stirewalt VL, Edward Stevens Jr, S, Porter RD, Tam J, Jay E (1985) Molecular cloning and nucleotide sequence of the α and β subunits of allophycocyanin from the cyanelle genome of Cyanophora paradoxa. Proc Natl Acad Sci USA 82:3242–3246

    Google Scholar 

  • Cavalier-Smith T (1982) The origin of plastids. Biol J Linn Soc 17:289–206

    Google Scholar 

  • Cavalier-Smith T (1986) The Kingdom Chromista: Origin and systematics. Prog Phycol Res 4:309–347

    Google Scholar 

  • Cavalier-Smith T (1987) The simultaneous symbiotic origin of mitochondria, chloroplasts and microbodies. Ann NY Acad Sci 503:55–71

    Google Scholar 

  • Cavalier-Smith T (1989) The Kingdom Chromista. In: Green JC, Leadbeater BSC, Diver WL (eds) The chromophyte algae — Problems and perspectives. Clarendon Press, Oxford pp 382–407

    Google Scholar 

  • Chesnick JM, Kugrens P, Cattolico RA (1991) The utility of mitochondrial DNA restriction fragment length polymorphisms to cryptomonad phylogenetic assessment. Molec Marine Biol and Biotech 1:18–26

    Google Scholar 

  • Choquet Y, Goldschmidt-Clermont M, Girard-Bascou J, Kück U, Bennoun P, Rochaix J-D (1988) Mutant phenotypes support a trans-splicing mechanism for the expression of the tripartite psaA gene in the C. reinhardtii chloroplast. Cell 52:903–913

    Google Scholar 

  • Coleman AW, Goff LJ (1991) DNA analysis of eukaryotic algal species. J Phycol 27:463–473

    Google Scholar 

  • Delaney TP (1989) Evolution, structure and organization of chloroplast ribosomal DNA in selected non-chlorophytic algae. PhD Thesis, University of Washington

  • Delaney TP, Cattolico RA (1989) Chloroplast ribosomal DNA organization in the chromophytic alga Olisthodiscus luteus. Curr Genet 15:221–229

    Google Scholar 

  • Douglas SE (1988) Physical mapping of the plastid genome from the chlorophyll c-containing alga, Cryptomonas φ. Curr Genet 14:591–598

    Google Scholar 

  • Douglas SE, Durnford D, Morden CW (1990) Nucleotide sequence of the gene for the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase from Cryptomonas φ: Evidence supporting the polyphyletic origins of plastids. J Phycol 26:500–508

    Google Scholar 

  • Dryden SC, Kaplan S (1990) Localization and structural analysis of the ribosomal RNA operons of Rhodobacter sphaeroides. Nucleic Acids Res 18:7267–7270

    Google Scholar 

  • Feinberg AP, Vogelstein B (1983) A technique for radiolabelling DNA restriction endonuclease fragments to high specific activity. Anal Biochem 132:6–13

    Google Scholar 

  • Gabrielson PW, Garbary DJ, Scagel RF (1985) The nature of the ancestral red alga: Inferences from a cladistic analysis. BioSystems 18:335–346

    Google Scholar 

  • Gibbs SP (1981) The chloroplast of some algal groups may have evolved from endosymbiotic eukaryotic algae. Ann NY Acad Sci 361:193–207

    Google Scholar 

  • Gouy M, Li W-H (1990) Arachaebacterial or eocyte tree? Nature 343:419

    Google Scholar 

  • Gray MW (1988) Organelle origins and ribosomal RNA. Biochem Cell Biol 66:325–348

    Google Scholar 

  • Gray MW (1989) The evolutionary origins of organelles. Trends Genet 5:11–16

    Google Scholar 

  • Groning BR, Frischmuth T, Jeske H (1990) Replicative form DNA of abutilon mosaic virus is present in plastids. Mol Gen Genet 220:485–488

    Google Scholar 

  • Hara Y, Inouye I, Chihara (1985) Morphology and ultrastructure of Olisthodiscus luteus (Raphidophyceae) with special reference to the taxonomy. Bot Mag Tokyo 98:251–262

    Google Scholar 

  • Hardison LK, Boczar BA, Reynolds AE, Cattolico RA (1991) A description of the Rubisco large subunit gene and its transcript in Olisthodiscus luteus. Plant Molec Biol (in press)

  • Hudson GS, Mason JG, Holtan TA, Koller B, Cox GB, Whitfeld PR, Bottomley W (1987) A gene cluster in the spinach and pea chloroplast genomes encoding one CF1 and three CF0 subunits of the H+-ATP synthase complex and the ribosomal protein S2. J Mol Biol 196:283–298

    Google Scholar 

  • Hwang S-R, Tabita FR (1989) Cloning and expression of the chloroplast encoded trbcL and rrbcS genes from the marine diatom Cylindrotheca sp. strain N1. Plant Mol Biol 13:69–70

    Google Scholar 

  • Kostrzewa M, Valentin K, Maid U, Radetzky R, Zetsche K (1990) Structure of the Rubisco operon from the multicellular red alga Antithamnion spec. Curr Gen 18:465–469

    Google Scholar 

  • Kowallik KV (1989) Molecular aspects and phylogenetic implications of plastid genomes of certain chromophytes. In: Green JC, Leadbeater BSC, Diver WL (eds) The chromophyte Algae — Problems and perspectives. Clarendon Press, Oxford pp 101–124

    Google Scholar 

  • Kück U (1989) The intron of a plastid gene from a green alga contains an open reading frame for a reverse transcriptase-like enzyme. Mol Gen Genet 218:257–265

    Google Scholar 

  • Lake JA (1990) Archaebacterial or eocyte tree? Nature 343:419

    Google Scholar 

  • Lemaux PG, Grossman AR (1984) Isolation and characterization of a gene for a major light-harvesting polypeptide from Cyanophora paradoxa. Proc Natl Acad Sci USA 81:4100–4104

    Google Scholar 

  • Li N (1989) Characterization of chloroplast genomes from the rhodophytic alga Griffithsia pacifica and the chrysophytic alga Ochromonas danica PhD Thesis, University of Washington

  • Li N, Cattolico RA (1987) Chloroplast genome characterization in the red alga Griffithsia pacifica. Mol Gen Genet 209:343–351

    Google Scholar 

  • Loiseaux-de Goër S, Markowicz Y, Dalmon J, Audren H (1988) Physical maps of the two circular plastid DNA molecules of the brown alga Pylaiella littoralis (L.) Kjellan. Curr Genet 14:155–162

    Google Scholar 

  • Manhart JR, Kelly K, Dudock BS, Palmer JD (1989) Unusual characteristics of Codium fragile chloroplast DNA revealed by physical and gene mapping. Mol Gen Genet 216:417–421

    Google Scholar 

  • Manhart JR, Hoshaw RW, Palmer JD (1990) Unique chloroplast genome in Spirogyra maxima (Chlorophyta) revealed by physical and gene mapping. J Phycol 26:490–494

    Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: A laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Markowicz Y, Loiseaux-de Goër S, Mache R (1988) Presence of a 16S rRNA pseudogene in the bimolecular plastid genome of the primitive brown alga Pylaiella littoralis. Curr Genet 14:599–608

    Google Scholar 

  • Mazel D, Houmard J, Tandeau de Marsac N (1988) A multigene family in Calothrix sp PCC 7601 encodes phycocyanin, the major component of the cyanobacterial light-harvesting proteins. Mol Gen Genet 211:296–304

    Google Scholar 

  • Miller DJ, McMillan J, Miles A, ten Lohuis M, Mahony T (1990) Nucleotide sequence of the histone H3-encoding gene from the scleractinian coral Acropora formosa (Cnidaria: Scleractinia). Gene 93:319–320

    Google Scholar 

  • Mishler BD, Bremer K, Humphries CJ, Churchill SP (1988) The use of nucleic acid sequence data in phylogenetic reconstruction. Taxon 37:391–395

    Google Scholar 

  • Morden CW, Golden SS (1989) psbA genes indicate common ancestry of prochlorophytes and chloroplasts. Nature 337:382–385

    Google Scholar 

  • Newman S, Cattolico RA (1990) Ribulose bisphosphate carboxylase in algae: Synthesis, enzymology and evolution. Photosyn Res 27:69–76

    Google Scholar 

  • Ohme M, Tanaka M, Chunwongse K, Shinozaki K, Sugiura M (1986) A tobacco chloroplast DNA sequence possibly coding for a polypeptide similar to E. coli RNA polymerase β-subunit. FEBS Lett 200:87–90

    Google Scholar 

  • Oishi KK, Shapiro DR, Tewari KK (1984) Sequence organization of a pea chloroplast DNA gene coding for a 34,500 Dalton protein. Mol Cell Biol 4:2556–2563

    Google Scholar 

  • Palmer JD (1985) Evolution of chloroplast and mitochondrial DNA in plants and algae. In: RJ MacIntyre (ed), Molecular evolutionary genetics, Plenum, New York, pp 131–240

    Google Scholar 

  • Palmer JD, Nugent JM, Herbon LA (1987) Unusual structure of geranium chloroplast DNA: A triple-sized inverted repeat, extensive gene duplications, multiple inversions, and two repeat families. Proc Natl Acad Sci USA 84:769–773

    Google Scholar 

  • Palmer JD, Osorio B, Thompson WF (1988) Evolutionary significance of inversions in legume chloroplast DNAs. Curr Genet 14:65–74

    Google Scholar 

  • Raven PH (1970) A multiple origin for plastids and mitochondria. Science 169:641–645

    Google Scholar 

  • Reith M, Cattolico RA (1986) Inverted repeat of Olisthodiscus luteus chloroplast DNA contains genes for both subunits of ribulose-1,5-bisphosphate carboxylase and the 32,000 dalton QB protein: Phylogenetic implications. Proc Natl Acad Sci USA 83:8599–8603

    Google Scholar 

  • Rochaix JD, Dron M, Rahire M, Malnoe P (1984) Sequence homology between the 32K dalton and the D2 chloroplast membrane polypeptides of Chlamydomonas reinhardii. Plant Mol Biol 3:363–370

    Google Scholar 

  • Rohlf FJ, Chang WS, Sokal RR, Kim J (1990) Accuracy of estimated phylogenies: effects of tree topology and evolutionary model. Evolution 44:1671–1684

    Google Scholar 

  • Schoelz JE, Zaitlin M (1989) Tobacco mosaic virus RNA enters chloroplast in vivo. Proc Natl Acad Sci USA 86:4496–4500

    Google Scholar 

  • Shinozaki K, Hayashida N, Sugiura M (1988) Nicotiana chloroplast genes for components of the photosynthetic apparatus. Photosynth Res 18:7–31

    Google Scholar 

  • Shivji M (1991) Organization of the chloroplast genome in the red alga Porphyra yezoensis. Curr Genet 19:49–54

    Google Scholar 

  • Sijben-Muller G, Hallick RB, Alt J, Westhoff P, Herrmann RG (1986) Spinach plastid genes coding for initiation factor IF-1, ribosomal protein S-11 and RNA polymerase — subunit. Nucleic Acids Res 14:1029–1044

    Google Scholar 

  • Sugiura M (1989) The chloroplast chromosomes in land plants. Annu Rev Cell Biol 5:51–70

    Google Scholar 

  • Svab Z, Hajdukiewicz P, Maliga P (1990) Stable transformation of plastids in higher plants. Proc Natl Acad Sci USA 87:8526–8530

    Google Scholar 

  • Turner S, Burger-Wiersma T, Giovannoni SJ, Mur LR, Pace NR (1989) The relationship of a prochlorophyte Prochlorothrix hollandica to green chloroplasts. Nature 337:380–382

    Google Scholar 

  • Valentin K, Zetsche K (1990 a) Structure of the Rubisco operon from the unicellular red alga Cyanidium caldarium: evidence for a polyphyletic origin of the plastids. Mol Gen Genet 222:425–430

    Google Scholar 

  • Valentin K, and Zetsche K (1990 b) Rubisco genes indicate a close phylogenetic relation between the plastids of Chromophyta and Rhodophyta. Plant Mol Biol 15:575–584

    Google Scholar 

  • Van de Peer Y, Neefs JM, De Wachter R (1990) Small ribisomal subunit RNA sequences, evolutionary relationships among different life forms, and mitochondrial origins. J Mol Evol 30:463–476

    Google Scholar 

  • Wilhelm C (1987) The existence of chlorophyll c in the chl b-containing, light-harvesting complex of the green alga Mantoniella squamata (Prasinophyceae). Botanica Acta 101:7–10

    Google Scholar 

  • Willey DL, Auffret AD, Gray JC (1984) Structure and topology of cytochrome f in pea chloroplast membranes. Cell 36:555–562

    Google Scholar 

  • Zurawski G, Bottomley W, Whitfield PR (1982) Structures of the genes for the B and E subunits of spinach chloroplast ATPase indicate a dicistronic mRNA and an overlapping translation stop/start signal. Proc Natl Acad Sci USA 79:6260–6264

    Google Scholar 

  • Zurawski G, Bottomley W, Whitfield PR (1986) Sequence of the genes for the B and E subunits of ATP synthase from pea chloroplasts. Nucleic Acids Res 14:3974

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shivji, M.S., Li, N. & Cattolico, R.A. Structure and organization of rhodophyte and chromophyte plastid genomes: implications for the ancestry of plastids. Molec. Gen. Genet. 232, 65–73 (1992). https://doi.org/10.1007/BF00299138

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00299138

Key words

Navigation