Skip to main content
Log in

Bone mineral density in weight lifters

  • Clinical Investigations
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Summary

The effect of intense physical training on the bone mineral content (BMC) and soft tissue composition, and the development of these values after cessation of the active career, was studied in 40 nationally or internationally ranked male weight lifters. Nineteen were active and 21 had retired from competition sports. Fifty-two age- and sexmatched nonweight lifters served as controls. The bone mineral density (BMD) in total body, spine, hip, and proximal tibial metaphysis was measured with a Lunar Dual-energy X-ray absorptiometry (DXA) apparatus and the BMD of the distal forearm was measured with single photon absorptiometry (SPA). Seventeen of the lifters had been measured earlier with SPA in the forearm and 23 in the tibial condyle during their active career in 1975. The BMD was significantly higher in the weight lifters compared with the controls (10% in the total body P<0.001, 12% in the trochanteric region P<0.001, and 13% in the lumbar spine P<0.001). All measured regions except the head showed significant higher bone mass in the weight lifters compared with the controls. In older lifters, the difference from the controls seemed to increase in total body and lumbar vertebrae (BMD), but remained unchanged in the hip. Significant correlation was found between the SPA measurements in 1975 and the corresponding measurements 15 years later in both the forearm (r=0.51, P<0.05 at the 1-cm level and r=0.87, P<0.001 at the 6-cm level) and in the tibial condyle (r=0.61, P<0.01). There was no difference in BMD for any region between active and retired weight lifters that was not explained by difference in age. The weight lifters were on average 5 cm shorter but of the same weight as the controls. In the weight lifters, the body mass index (BMI) was increased as was the lean body mass, but not the fat content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Block JE, Genant HK, Black D (1978) Greater vertebral bone mineral mass in exercising young men. West J Med 145:39–42

    Google Scholar 

  2. Jacobsson PC, Beaver W, Grubb SA, Taft TN, Talmage RV (1984) Bone density in women: college and older athletic women. J Orthop Res 2(4):238–332

    Google Scholar 

  3. Talmage RV, Stinett SS, Landwehr JT, Vincent LM, Mc Cartmey WH (1986) Age-related loss of bone mineral density in non-athletic and athletic women. Bone Miner 1(2):115–125

    Google Scholar 

  4. Nilsson BE, Westlin NE (1971) Bone density in athletes. Clin Orthop Rel Res 77:179–182

    Google Scholar 

  5. Granheden H, Jonsson R, Keller T, Hansson T (1988) Short-and long-term effects of vigorous physical activity on bone mineral in the human spine. PhD thesis Granheden H Extreme spinal loadings. Effects on the vertebral bone mineral content and strength, and the risks for future low back pain in man. University of Gothenburg, Göteborg, Sweden

  6. Notelovitz M, Martin D, Tesar R, Khan FY, Probart C, Fields C, McKenzie L (1991) Estrogen therapy and variable-resistance weight training increase bone mineral in surgically menopausal women. J Bone Miner Res 6:583–590

    Google Scholar 

  7. Gutin B, Kasper MJ (1992) Can vigorous exercise play a role in osteoporosis prevention? A review. Osteoporosis Int 2:55–69

    Google Scholar 

  8. Colletti LA, Edwards J, Gordon L, Shary J, Bell NH (1989) The effects of muscle-building exercise on bone mineral density of the radius, spine, and hip in young men. Calcif Tissue Int 45:12–14

    Google Scholar 

  9. Donaldsson CL, Hulley SB, Vogel JM, Hattner RS, Bayers JH, McMillan DE (1970) Effect of prolonged bed rest on bone mineral. Metabolism 19(12):1071–1084

    Google Scholar 

  10. Krolner B, Toft B (1983) Vertebral bone loss: an unheeded side effect of therapeutic bed rest. Clin Sci 64:537–540

    Google Scholar 

  11. Dalsky GP, Stocke KS, Ehsani AA, Slatopolsky E, Lee WC, Birge SJ (1988) Weight-bearing exercise training and lumbar bone mineral content in postmenopausal women. Ann Int Med 108:824–828

    Google Scholar 

  12. Krolner B, Töndevold E, Toft B, Berthelsen B, Nielsen SP (1982) Bone mass of the axial and appendicular skeleton in women with Colle's fracture: its relation to physical activity. Clin Physiol 2:147–157

    Google Scholar 

  13. Gärdsell P, Johnell O, Nilsson BE (1991) The predictive value of bone loss for fragility fractures in women. Calcif Tissue Int 49(2):90–94

    Google Scholar 

  14. Mazess RB, Barden HS, Bisek JP, Hanson J (1990) Dual-energy X-ray absorptiometry for total-body and regional bone-mineral and soft tissue composition. Am J Clin Nutr 51:1106–1112

    Google Scholar 

  15. Rockwell JC, Sorensen AM, Baker S, Leahey D, Stock JL, Michaels J, Baran DT (1990) Weight training decreases vertebral bone density in premenopausal women: a prospective study. J Clin Endocrinol Metab 71:988–993

    Google Scholar 

  16. Hickson RC, Hagberg JM, Ehsani AA, Holloszy JO (1981) Time course of the adaptive responses of aerobic power and heart rate to training. Med Sci Sports Exerc 13(1):17–20

    Google Scholar 

  17. Margulies JY (1986) Effect of intense physical activity on the bone mineral content in the lower limbs of young adults. J Bone Joint Surg (Am) 68A:7:1090–1093

    Google Scholar 

  18. Aloia JF, Cohn SH, Ostuni JA, Cane R, Ellis K (1978) Prevention of involuntary bone loss by exercise. Ann Int Med 89:356–358

    Google Scholar 

  19. Chow RK, Harrison JE, Brown CF, Hajek V (1986) Physical fitness effect on bone mass in postmenopausal women. Arch Phys Med Rehabil 67:231–234

    Google Scholar 

  20. Huddlestone AL, Rockwell D, Kulund BN, Harrison RB (1980) Bone mass in lifetime athletes. JAMA 244:1107–1109

    Google Scholar 

  21. Cavanaugh DJ, Cann CE (1988) Brisk walking does not stop bone loss in postmenopausal women. Bone 9:201–204

    Google Scholar 

  22. Mazess RB, Whedon GD (1983) Immobilisation and bone. Calcif Tissue Int 35:265–267

    Google Scholar 

  23. National Institute of Health (1984) Osteoporosis conscensus conference. JAMA 252:199–802

    Google Scholar 

  24. Block JE, Friedlander AL, Brooks GA, Steiger P, Stubbs HA, Genant HK (1989) Determinants of bone density among athletes engaged in weight-bearing and nonweight-bearing activity. Am Physiol Soc 67(3):1100–1105

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karlsson, M.K., Johnell, O. & Obrant, K.J. Bone mineral density in weight lifters. Calcif Tissue Int 52, 212–215 (1993). https://doi.org/10.1007/BF00298721

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00298721

Key words

Navigation