Skip to main content
Log in

Organization and nucleotide sequence of ten ribosomal protein genes from the region equivalent to the spectinomycin operon in the archaebacterium Halobacterium marismortui

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

The nucleotide sequence has been determined of a 4700 by region from a ribosomal protein gene cluster of Halobacterium marismortui (Haloarcula marismortui), which is equivalent to part of the spectinomycin operon of Escherichia coli. The genes were localized on the recombinant λEMBL3 clone PP*7, which also contains several other ribosomal protein genes from the DNA region in H. marismortui equivalent to the linked S10/spc operon. The genes analysed encode ten ribosomal proteins, namely HmaL5, HmaS14, HmaS8, HmaL6, HL5, HL24, HmaL18, HmaS5, HmaL30 and HmaL15. The gene organization of the archaebacterial cluster is similar to that in eubacteria but has two additional genes, namely those encoding HL5 and HL24, which were identified as extra proteins that are apparently not present in E. coli. These correspond to the gene products of orfd and orfe in Methanococcus vannielii and also have eukaryotic counterparts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen G, Wittmann-Liebold B (1978) The amino acid sequence of the ribosomal protein S8 of Escherichia coli. Hope-Seyler's Z Physiol Chem 359:1509–1525

    Google Scholar 

  • Arndt E (1990) Nucleotide sequence of four genes encoding ribosomal proteins from the ‘S10 and spectinomycin’ operon equivalent region in the archaebacterium Halobacterium marismortui. FEES Lett 267:193–198

    Google Scholar 

  • Arndt E, Kimura M (1988) Molecular cloning and nucleotide sequence of the gene for the ribosomal protein S11 from the archaebacterium Halobacterium marismortui. J Biol Chem 263:16063–16068

    Google Scholar 

  • Arndt E, Weigel C (1990) Nucleotide sequence of the genes encoding the L11, L1, L10 and L12 equivalent ribosomal proteins from the archaebacterium Halobacterium marismortui. Nucleic Acids Res 18:1285

    Google Scholar 

  • Arndt E, Breithaupt G, Kimura M (1986) The complete amino acid sequence of ribosomal protein H-S11 from the archaebacterium Halobacterium marismortui. FEBS Lett 194:227–234

    Google Scholar 

  • Arndt E, Krömer W, Hatakeyama T (1990) Organization and nucleotide sequence of a gene cluster coding for eight ribosomal proteins in the archaebacterium Halobacterium marismortui. J Biol Chem 265:3034–3039

    Google Scholar 

  • Auer J, Spicker G, Böck A (1989) Organization and structure of the Methanococcus transcriptional unit homologous to the Escherichia coli “Spectinomycin Operon”. J Mol Biol 209:21–36

    Google Scholar 

  • Bergmann U, Arndt E (1990) Evidence for an additional archaebacterial gene cluster in Halobacterium marismortui encoding ribosomal proteins HL46c and HL30. Biochim Biophys Acta 1050:56–60

    Google Scholar 

  • Brosius J, Schiltz E, Chen R (1975) The primary structure of the 5S RNA binding protein L18 from Escherichia coli ribosomes. FEBS Lett 56:359–361

    Google Scholar 

  • Cerretti DP, Dean D, Davis GR, Bedwell DM, Nomura M (1983) The spc ribosomal protein operon of Escherichia coli: Sequence and cotranscription of the ribosomal protein genes and a protein export gene. Nucleic Acids Res 11:2599–2616

    Google Scholar 

  • Chan YL, Lin A, McNally J, Peleg D, Meyuhas O, Wool IG (1987a) The primary structure of rat ribosomal protein L19. J Biol Chem 262:1111–1115

    Google Scholar 

  • Chan YL, Lin A, McNally J, Wool IG (1987b) The primary structure of rat ribosomal protein L5. J Biol Chem 262:12879–12886

    Google Scholar 

  • Chen R, Ehrke G (1976) The primary structure of the 5 S RNA binding protein L5 of Escherichia coli ribosomes. FEBS Lett 69:240–245

    Google Scholar 

  • Chen R, Arfsten U, Chen-Schmeisser U (1977) The primary structure of protein L6 from the aminoacyl-tRNA binding site of the Escherichia coli ribosome. Hoppe-Seyler's Z Physiol Chem 358:531–535

    Google Scholar 

  • Devereux J, Haeberli P, Smithies O (1984) A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 12:387–395

    Google Scholar 

  • Dijk J, van den Broek R, Nasiulas G, Beck A, Reinhardt R, Wittmann-Liebold B (1987) The N-terminal sequence of ribosomal protein L10 from the archaebacterium Halobacterium marismortui and its relationship to eubacterial protein L6 and other ribosomal proteins. Biol Chem Hoppe-Seyler 368:921–925

    Google Scholar 

  • Hatakeyama T, Hatakeyama T (1990) Amino acid sequences of the ribosomal proteins HL30 and HmaL5 from the archaebacterium Halobacterium marismortui. Biochim Biophys Acta 1039:343–347

    Google Scholar 

  • Hatakeyama T, Kimura M (1988) Complete amino acid sequences of the ribosomal proteins L25, L29 and L31 from the archaebacterium Halobacterium marismortui. Eur J Biochem 172:703–711

    Google Scholar 

  • Hatakeyama T, Kaufmann F, Schroeter B, Hatakeyama T (1989) Primary structures of five ribosomal proteins from the archaebacterium Halobacterium marismortui and their structural relationships to eubacterial and eukaryotic ribosomal proteins. Eur J Biochem 185:685–693

    Google Scholar 

  • Heller DL, Gianola KM, Leinwand LA (1988) A highly conserved mouse gene with a propensity to form pseudogenes in mammals. Mol Cell Biol 8:2797–2803

    Google Scholar 

  • Henkin TM, Moon SH, Mattheakis LC, Nomura M (1989) Cloning and analysis of the spc ribosomal protein operon of Bacillus subtilis: Comparison with the spc operon of Escherichia coli. Nucleic Acids Res 17:7469–7486

    Google Scholar 

  • Huber PW, Wool IG (1986) Use of the cytotoxic nuclease α-sarcin to identify the binding site on eukaryotic 5 S ribosomal ribonucleic acid for the ribosomal protein L5. J Biol Chem 261:3002–3005

    Google Scholar 

  • Kimura M (1984) Proteins of the Bacillus stearothermophilus ribosome. J Biol Chem 259:1051–1055

    Google Scholar 

  • Kimura J, Kimura M (1987 a) The complete amino acid sequences of the 5 S rRNA binding proteins L5 and L18 from the moderate thermophile Bacillus stearothermophilus ribosome. FEBS Lett 210:85–90

    Google Scholar 

  • Kimura J, Kimura M (1987 b) The primary structures of ribosomal proteins S14 and S16 from the archaebacterium Halobacterium marismortui. J Biol Chem 262:12150–12157

    Google Scholar 

  • Kimura M, Rawlings N, Appelt K (1981) The amino acid sequence of protein BL10 from the 50 S subunit of the Bacillus stearothermophilus ribosome. FEBS Lett 136:58–64

    Google Scholar 

  • Kimura M, Arndt E, Hatakeyama T, Hatakeyama T, Kimura J (1989) Ribosomal proteins in halobacteria. Can J Microbiol 35:195–199

    Google Scholar 

  • Leer RJ, van Raamsdonk-Duin MMC, Kraakman P, Mager WH, Planta RJ (1985) The genes for yeast ribosomal proteins S24 and L46 are adjacent and divergently transcribed. Nucleic Acids Res 13:701–709

    Google Scholar 

  • Makowski I, Frolow F, Saper MA, Shoham M, Wittmann HG, Yonath A (1987) Single crystals of large ribosomal particles from Halobacterium marismortui diffract to 6 Å. J Mol Biol 193:819–822

    Google Scholar 

  • Matheson AT, Yaguchi M, Christensen P, Rollin CF, Hasnain S (1984) Purification, properties, and N-terminal amino acid sequence of certain 50S ribosomal subunit proteins from the archaebacterium Halobacterium cutirubrum. Can J Biochem Cell Biol 62:426–433

    Google Scholar 

  • Nazar RN, Yaguchi M, Willick GE, Rollin CF, Roy C (1979) The 5-S RNA binding protein from yeast (Saccharomyces cerevisiae) ribosomes. Eur J Biochem 102:573–582

    Google Scholar 

  • O'Connell P, Rosbash M (1984) Sequence, structure, and codon preference of the Drosophila ribosomal protein 49 gene. Nucleic Acids Res 12:5495–5513

    Google Scholar 

  • Orcutt BC, Dayhof MO, Barker WC (1982) Protein sequence database. NBR Report 820501-08710. National Biochemical Research Foundation, Washington DC

    Google Scholar 

  • Oren A, Ginzburg M, Ginzburg BZ, Hochstein LL Volcani BE (1990) Haloarcula marismortui (Volcani) sp. nov., nom. rev., an extremely halophilic bacterium from the dead sea. Int J Syst Bacteriol 40:209–210

    Google Scholar 

  • Ritter E, Wittmann-Liebold B (1975) The primary structure of protein L30 from Escherichia coli ribosomes. FEBS Lett 60:153–155

    Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467

    Google Scholar 

  • Smith N, Matheson AT, Yaguchi M, Willick GE, Nazar RN (1978) The 5-S RNA protein complex from an extreme halophile, Halobacterium cutirubrum. Eur J Biochem 89:501–509

    Google Scholar 

  • Suzuki K, Olvera J, Wool IG (1990) The primary structure of rat ribosomal protein L9. Gene 93:297–300

    Google Scholar 

  • Teem JL, Abovich N, Käufer NF, Schwindinger WF, Warner JR, Levy A, Woolford J, Leer RJ, van Raamsdonk-Duin MMC, Mager WH, Planta RJ, Schultz L, Friesen JD, Fried H, Rosbash M (1984) A comparison of yeast ribosomal protein gene DNA sequences. Nucleic Acids Res 12:8295–8312

    Google Scholar 

  • Wahleithner JA, Wolstenholme DR (1988) Ribosomal protein S14 genes in broad bean mitochondrial DNA. Nucleic Acids Res 16:6897–6913

    Google Scholar 

  • Walsh MJ, McDougall J, Wittmann-Liebold B (1988) Extended N-terminal sequencing of proteins of archaebacterial ribosomes blotted from tow-dimensional gels onto glass fiber and poly(vinylidene difluoride) membrane. Biochemistry 27:6867–6876

    Google Scholar 

  • Wittmann-Liebold B, Greuer B (1978) The primary structure of protein S5 from the small subunit of the Escherichia coli ribosome. FEBS Lett 95:91–98

    Google Scholar 

  • Wittmann-Liebold B, Köpke AKE, Arndt E, Krömer W, Hatakeyama T, Wittmann HG (1990) Sequence comparison and evolution of ribosomal proteins and their genes. In: Hill WE, Dahlberg A, Garrett RA, Moore PB, Schlessinger D, Warner JR (eds) The ribosome: Structure, function and evolution. ASM Publications, Washington DC, pp 598–616

    Google Scholar 

  • Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms: Proposal for the domains archaea, bacteria, and eucarya. Proc Natl Acad Sci USA 87:4576–4579

    Google Scholar 

  • Yaguchi M, Roy C, Reithmeier RAF, Wittmann-Liebold B, Wittmann HG (1983) The primary structure of protein S14 from the small ribosomal subunit of Escherichia coli. FEBS Lett 154:21–30

    Google Scholar 

  • Young JAT, Trowsdale J (1985) A processed pseudogene in an intron of the HLA-Dpβ 1 chain gene is a member of the ribosomal protein L32 gene family. Nucleic Acids Res 13:8883–8891

    Google Scholar 

  • Yu RST, Wittmann HG (1973) The sequence of steps in the attachment of 5-S RNA to cores of Escherichia coli ribosomes. Biochim Biophys Acta 324:375–385

    Google Scholar 

  • Zurawski G, Zurawski SM (1985) Structure of the Escherichia coli S10 ribosomal protein operon. Nucleic Acids Res 13:4521–4526

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by W. Goebel

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scholzen, T., Arndt, E. Organization and nucleotide sequence of ten ribosomal protein genes from the region equivalent to the spectinomycin operon in the archaebacterium Halobacterium marismortui . Molec. Gen. Genet. 228, 70–80 (1991). https://doi.org/10.1007/BF00282450

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00282450

Key words

Navigation