Skip to main content
Log in

Decay estimates for some semilinear damped hyperbolic problems

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

Let Ω be a bounded open domain in R n, gRR a non-decreasing continuous function such that g(0)=0 and h ε L 1loc (R+; L 2(Ω)). Under suitable assumptions on g and h, the rate of decay of the difference of two solutions is studied for some abstract evolution equations of the general form u ′′ + Lu + g(u ) = h(t,x) as t → + ∞. The results, obtained by use of differential inequalities, can be applied to the case of the semilinear wave equation

$$u_u - \Delta u + g{\text{(}}u_t {\text{) = }}h{\text{ in }}R^ + \times \Omega ,{\text{ }}u = {\text{0 on }}R^ + \times \partial \Omega$$

in R +×Ω, u=0 on R +×∂Ω. For instance if \(g(s) = c\left| s \right|^{p - 1} s + d\left| s \right|^{q - 1} s\) with c, d>0 and 1 < p≦q, (n−2)q≦n+2, then if \(h \in L^\infty (R + ;L^2 (\Omega ))\), all solutions are bounded in the energy space for t≧0 and if u, v are two such solutions, the energy norm of u(t) − v(t) decays like t −1/p−1 as t → + ∞.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. L. Amerio & G. Prouse, Uniqueness and almost periodicity theorems for a non-linear wave equation, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 46 (1969), 1–8.

    Google Scholar 

  2. H. Brezis, Opérateurs maximaux monotones et semi-groupes de contractions dans le espaces de Hilbert, North-Holland, Amsterdam, London (1972), Lecture Notes n∘ 5.

    Google Scholar 

  3. H. Brezis, Problèmes unilateraux, J. Math. Pures Appl. 51 (1972), 1–168.

    Google Scholar 

  4. A. Chabi, to appear.

  5. F. Chentouh, Décroissance de l'énergie pour certaines équations hyperboliques semilinéaires dissipatives, Thèse 3∘ cycle, Université Pierre et Marie Curie (1984).

  6. A. Haraux, Semilinear hyperbolic problems in bounded domains, to appear in “Mathematical reports”, J. Dieudonné Editor, Harwood Academic Publishers, Gordon & Breach.

  7. A. Haraux, Comportement à l'infini pour une équation des ondes non linéaire dissipative, C.R.A.S. Paris 287, Ser. A (1978), 507–509.

    Google Scholar 

  8. A. Haraux, Nonlinear evolution equations: Global behavior of solutions, Lecture Notes in Math. n∘ 841, Springer (1981).

  9. A. Haraux, Almost periodic forcing for a wave equation with a nonlinear, local damping term, Proc. Roy. Soc. Edinburgh, 94A (1983), 195–212.

    Google Scholar 

  10. A. Haraux, A new characterization of weak solutions to the damped wave equation, Pub. Lab. d'Analyse Numérique n∘ 85039 (1985), 16 p.

  11. A. Haraux, Asymptotics for some nonlinear hyperbolic equations with a one-dimensional set of rest points, to appear in “Bulletin of the Brazilian Mathematical Society”.

  12. J.-L. Lions & W. A. Strauss, Some non-linear evolution equations, Bull. Soc. math. France 93 (1965), 43–96.

    Google Scholar 

  13. M. Nakao, Asymptotic stability of the bounded or almost periodic solution of the wave equation with a nonlinear dissipative term, J. Math. Anal. Appl. 58 (1977), 336–343.

    Google Scholar 

  14. M. Nakao, A difference inequality and its applications to nonlinear evolution equations, J. Math. Soc. Japan 30, 4 (1978), 747–762.

    Google Scholar 

  15. M. Nakao, On the decay of solutions of some nonlinear wave equations in higher dimensions, Math. Z. 193 (1986), 227–234.

    Google Scholar 

  16. E. Zuazua, Stability and decay for a class of nonlinear hyperbolic problems, to appear.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by H. Brezis

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haraux, A., Zuazua, E. Decay estimates for some semilinear damped hyperbolic problems. Arch. Rational Mech. Anal. 100, 191–206 (1988). https://doi.org/10.1007/BF00282203

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00282203

Keywords

Navigation