Skip to main content
Log in

Biotechnical utilization of wood carbohydrates after steaming pretreatment

  • Biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Summary

Birch wood was used as raw material to study the effect of steaming pretreatment on the characteristics, enzymatic hydrolysis and fermentation of cellulose and hemicellulose. The cellulose remained undissolved in the fibres after steaming, but the degree of polymerization decreased and the surface area increased with increasing steaming temperature. The yield in enzymatic hydrolysis with T. reesei and A. niger cellulases increased from 40 to 75% of theoretical when the pretreatment temperature was increased from 170 to 210°C at a residence time of 10 minutes. The glucose released was fermented to ethanol by yeast without interference of toxic compounds. After steaming, the hemicellulose was mainly in the form of xylo-oligomers. The average chain length decreased with increasing temperature. Only the monomeric sugars were fermented to ethanol by Fusarium oxysporum. After steaming at 210°C toxic decomposition products inhibited the fermentation completely. In aerobic conditions also the xylo-oligomers were metabolized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Azhar AF, Bery MK, Colcord AR (1981) Factors affecting alcohol fermentation of wood acid hydrolysate. Biotechn Bioeng Symp Ser No 11, pp 293–300

  • Bailey MJ, Nevalainen KMH (1981) Induction, isolation and testing of stable Trichoderma reesei mutants with improved production of solubilizing cellulose. Emzyme Microb Technol 3:153–157

    Google Scholar 

  • Batter TR, Wilke CR (1977) A study on the fermentation of xylose to ethanol by Fusarium oxysporum. Lawrence Berkeley Laboratory Rept No 6365

  • Banerjee N, Bhatnagar R, Viswanathan L (1981) Inhibition of glycolysis by furfural in Saccharomyces cerevisiae. Eur J Appl Microbiol Biotechnol 11:226–228

    Google Scholar 

  • Clark TA, Mackie KL (1984) Fermentation inhibitors in wood hydrolysates derived from the soft wood Pinus radiata. J Chem Tech Biotechnol 34B:101–110

    CAS  Google Scholar 

  • Dekker RFH, Wallis AFA (1983) Enzymatic saccharification of sugarcane bagasse pretreated by autohydrolysis-steam explosion. Biotechnol Bioeng 25:3027–3048

    Google Scholar 

  • Enari T-M, Suihko M-L (1983) Ethanol production by fermentation of pentoses and hexoses from cellulosic materials. CRC Critical Reviews in Biotechnology 1:229–240

    Google Scholar 

  • Knolie H, Jayme G (1965) Uber ein digitales Verfahren zur empirischen Bestimmung der Röntgenkristallinität cellulosehaltiger Stoffe und seine Anwendung. Das Papier 19:106–110

    Google Scholar 

  • Körner HU, Gottschalk D, Puls J (1984) Anwendbarkeit der Gel-Permeations-Chromatographie zur Bestimmung der Molekulargewichtsverteilung und des Polymerisationsgrades von Cellulosen. Das Papier 38:255–261

    Google Scholar 

  • Lee YY, McCaskey TA (1983) Hemicellulose hydrolysis and fermentation of resulting pentoses to ethanol. Tappi 66:102–107

    Google Scholar 

  • Lowry OH, Rosebrough NH, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Mandels M, Andreotti R, Roche C (1976) In: Gaden EL, Mandels MH, Reese ET, Spano LA (eds) Biotechnol Bioeng Symp No 6. John Wiley and Sons, New York 1976, pp 21–33

    Google Scholar 

  • Marchessault RH, Malhatra SL, Jones AY, Perovic A (1983) The wood explosion process: Characterization and uses of lignin/cellulose products. In: Soltes J (ed) Wood and Agricultural Residues. Academic Press, New York London, pp 401–413

    Google Scholar 

  • Mes-Hartree M, Saddler JN (1983) The nature of inhibitory materials present in pretreated lignocellulosic substrates which inhibit the enzymatic hydrolysis of cellulose. Biotechnol Lett 5:531–536

    Google Scholar 

  • Nummi M, Fox PC, Niku-Paavola M-L, Enari T-M (1981) Nephelometric and turbidometric assays of cellulase activity. Anal Biochem 116 (1981) 133–136

    Google Scholar 

  • Puls J, Ayla C, Dietrichs HH (1983) Chemicals and ruminant feed from lignocelluloses by the steaming-extraction process. J Appl Polym Sci Polym Symp 37:685–695

    Google Scholar 

  • Puls J, Dietrichs HH (1980) Separation of lignocelluloses into highly accessible fibre materials and into hemicallulose fractions by the steaming extraction process. In: Rijkens BA, Theander O (eds) Proceedings of OECD Workshop “Conversion of lignocellulosic materials to simple carbohydrates”. 8–10 Oct. Amersfoort. IBVL Wageningen, NL, pp 134–206

    Google Scholar 

  • Saddler JN, Mes-Hartree M (1984) Direct conversion of cellulose to ethanol: processing aspects. In: Rolz C, de Cabrera Sh, Garcia R, Calzada JF, de Leon R (eds) Avances en la produccion de etanol. Memorias del tercer simposio panamericano de combustibles y productos quimicos via fermentation. ICAITI, Guatemala, pp 104–137

    Google Scholar 

  • Saeman JF, Andreasen AA (1954) The production of alcohol from wood waste. In: Underkofler LA, Hickey RJ (eds) Industrial fermentations. Chemical Publishing Co, New York, pp 136–171

    Google Scholar 

  • Sinitsyn AP, Clesceir LS, AP Bongay HR (1982) Inhibition of cellulases by impurities in steam-exploded wood. Appl Biochem Biotechnol 7:455–458

    Google Scholar 

  • Sinner M, Puls J (1978) Non-corrosive dye reagent for detection of reducing sugars in borate complex ion-exchange chromatography. J Chromatogr 156:197–204

    Google Scholar 

  • Sinner M, Schreier M, Ballweg A (1983) Integrated fodder ethanol complex (IFEC). In: Strub A, Chartier P, Schleser L (eds) Proceedings of the 2nd E.C. Conference “Energy from Biomass”. Appl Science Publishers London, pp 984–998

    Google Scholar 

  • Sinner M, Simatupang MH, Dietrichs HH (1975) Automated quantitative analysis of wood carbohydrates by borate complex ion exchange chromatography. Wood Sci Technol 9:307–322

    Google Scholar 

  • Suihko M-L (1984) d-xylose fermentation by Fusarium oxysporum and other fungi. Technical Research Centre of Finland, Publications 17, Espoo

    Google Scholar 

  • Sumner JB, Somers GF (1949) In: Laboratory experiments in biological chemistry, 2nd edn. Academic Press, New York 1949, pp 38–39

    Google Scholar 

  • Technical Association of the Pulp and Paper Industry (1954) Lignin in wood. TAPPI Standard T 13m-54

  • Vallander L, Eriksson K-E (1983) Enzymatic saccharification of pretreated wheat straw. Proceedings of Biotechnology in the Pulp and Paper Industry, London, September 12–14, pp 90–112

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Puls, J., Poutanen, K., Körner, HU. et al. Biotechnical utilization of wood carbohydrates after steaming pretreatment. Appl Microbiol Biotechnol 22, 416–423 (1985). https://doi.org/10.1007/BF00252783

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00252783

Keywords

Navigation