Skip to main content
Log in

Genome size in wild Pisum species

  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Genome size was measured in 75 samples of the wild pea species Pisum abyssinicum, P. elatius, P. fulvum and P. humile by ethidium-bromide (EB) flow cytometry (internal standard: Triticum monococcum) and Feulgen densitometry (internal standard: Pisum sativum ‘Kleine Rheinländerin’). Total variation of EB-DNA between samples covered 97.7% to 114.9% of the P. sativum value, and Feulgen DNA values were strongly correlated with EB-DNA values (r=0.9317, P < 0.001). Only P. fulvum was homogeneous in genome size (108.9% of P. sativum). Wide variation was observed between samples in P. abyssinicum (100.9–109.7%), P. elatius (97.7–114.9%) and P. humile (98.3–111.1% of P. sativum). In view of the world-wide genome size constancy in P. sativum, the present data are interpreted to show that the pea taxa with variable genome size are genetically inhomogeneous and that the current classification is not sufficient to describe the biological species groups adequately.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baranyi M, Greilhuber J (1995) Flow cytometric analysis of genome size variation in cultivated and wild Pisum sativum (Fabaceae). Plant Syst Evol 194:231–239

    Google Scholar 

  • Baranyi M, Greilhuber J (1996) Flow cytometric and Feulgen densitometric analysis of genome size variation in Pisum. Theor Appl Genet 92:297–307

    Google Scholar 

  • Ben-Ze'ev N, Zohary D (1973) Species relationship in the genus Pisum L. Israel J Bot 22:73–91

    Google Scholar 

  • Conicella C, Errico A (1985) Identification of the chromosomes involved in translocations of P. abyssinicum and P. fulvum. In:Eucarpia Meeting on Pea Breeding. Plant Breeding Center C.N.R., Portici, Italy, pp 86–101

    Google Scholar 

  • Conicella C, Errico A (1990) Karyotype variations in Pisum sativum ect. abyssinicum. Caryologia 43:87–97

    Google Scholar 

  • Davis PH (1970) Pisum L. In:Davis PH (ed) Flora of Turkey, vol. 3. University Press, Edinburgh, pp 370–372

    Google Scholar 

  • Errico A, Conicella C, Venora G (1991) Karyotype studies on Pisum fulvum and Pisum sativum, using a chromosome image analysis system. Genome 34:105–108

    Google Scholar 

  • Govorov LI (1937) Gorokh (peas). In:Kul'turnaja flora SSSR. Selkhozgiz. Moskow and Leningrad

    Google Scholar 

  • Greilhuber J, Ebert J (1994) Genome size variation in Pisum sativum. Genome 37:646–655

    Google Scholar 

  • Greilhuber J, Ehrendorfer F (1988) Karyological approaches to plant taxonomy. In: Grimwade AM (ed) ISI atlas of science: plants and animals, vol. 1. Institute for Scientific Information, Philadelphia, pp 289–297

    Google Scholar 

  • Hâkansson A (1936) Die Reduktionsteilung in einigen Artbastarden von Pisum. Hereditas 21:215–222

    Google Scholar 

  • Lamprecht H (1964) Partielle Sterilität und Chromosomenstruktur bei Pisum. Agri Hort Genet 22:56–148

    Google Scholar 

  • Lamprecht H (1974) Monographie der Gattung Pisum. Steiermärkische Landesdruckerei, Graz

    Google Scholar 

  • Lehmann ChO (1954) Das morphologische System der Saaterbsen (Pisum sativum L. sens. lat. GOV. ssp. sativum). Züchter 24:316–337

    Google Scholar 

  • Lehmann ChO, Blixt S (1984) Artificial infraspecific classification in relation to phenotypic manifestation of certain genes in Pisum. Agri Hort Genet 42:49–74

    Google Scholar 

  • Makasheva RKh (1984) The pea. Balkema, Rotterdam

    Google Scholar 

  • Rohlf FJ (1992) BIOM. A package of statistical programs to accompany the text “Biometry”. Applied Biostatistics, Inc., New York

    Google Scholar 

  • Rosen G von (1944) Artkreuzungen in der Gattung Pisum, insbesondere zwischen P. sativum L. und P. abyssinicum Braun. Hereditas 30:261–400

    Google Scholar 

  • Saccardo F (1971) Crosses among Pisum species. Pisum Newslett 3:38

    Google Scholar 

  • Schweizer D, Davies D (1972) Nuclear DNA contents of Pisum genotypes grown in vivo and in vitro. Planta 106:23–29

    Google Scholar 

  • Smartt J (1984) Evolution of grain legumes. I. Mediterranean pulses. Exp Agric 20:275–296

    Google Scholar 

  • Zohary D, Hopf M (1973) Domestication of pulses in the Old World. Science 182:887–894

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by F. Mechelke

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baranyi, M., Greilhuber, J. & Swięcicki, W.K. Genome size in wild Pisum species. Theoret. Appl. Genetics 93, 717–721 (1996). https://doi.org/10.1007/BF00224067

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00224067

Key words

Navigation