Skip to main content
Log in

On the use of scanning tunneling microscopy to investigate surface structure and interface formation in transition metal oxides: SrTiO3 and TiO2

  • Published:
Interface Science

Abstract

Since transition metal oxides are wide bandgap, low conductivity materials compared to conventional semiconductors, surface analysis by scanning tunneling microscopy (STM) is expected to be problematic. This paper considers the factors that affect atomic scale imaging of transition metal oxides and demonstrates how STM can be exploited to examine the geometric and electronic structures of SrTiO3 and TiO2 surfaces, their variations with thermochemical history, and the mechanisms of metal/oxide interface formation. The development of periodic atomic scale surface structure with variations in surface compositions are documented for both oxides. Further, the interactions of these surfaces with metal are examined by characterizing the morphologies that develop upon deposition of Cu on SrTiO3 and Al on TiO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. V.E.Henrich and P.A.Cox, The Surface Science of Metal Oxides (Cambridge University Press, Cambridge, UK, 1994).

    Google Scholar 

  2. D.A.Bonnell, ed., Scanning Tunneling Microscopy: Theory, Techniques, and Applications (VCH, Pub. NY, 1993).

    Google Scholar 

  3. G.S.Rohrer, V.Henrich, and D.A.Bonnell, Science 250, 1239 (1991).

    Google Scholar 

  4. Y. Liang and D. Bonnell, Surf. Sci. Lett. 285, L510 (1993).

    Google Scholar 

  5. D.A.Bonnell, Ceramic Transactions 5, 315 (1989).

    Google Scholar 

  6. Q.Zhong, J.Vohs, and D.Bonnell, Surf. Sci. 274, 35 (1992).

    Google Scholar 

  7. F.Flores and N.Garcia, Phys. Rev. B 30, 2289 (1984).

    Google Scholar 

  8. P.Murray, F.Leibsle, H.Fischer, C.Flipse, C.Muryn, and G.Thornton, Phys. Rev. B 46, 12877–12879 (1992).

    Google Scholar 

  9. T. Matsumoto, H. Tanaka, T. Kawai, and S. Kawai, Surf. Sci. 278, L153 (1992).

  10. W.Lu, M.Norton, and G.Rohrer, Surf. Sci. 291, 395 (1993).

    Google Scholar 

  11. M. Sander and T. Engle, Surf. Sci. Lett. 302, L263 (1994).

  12. T.Oshio, Y.Sakai, and T.Moriya, Ultra Mic. 42, 744–748 (1992).

    Google Scholar 

  13. P.Thibado, G.Rohrer, and D.Bonnell, Surf. Sci., 318, 379 (1994).

    Google Scholar 

  14. D.A.Bonnell and D.R.Clarke, J. Am. Cer. Soc. 71, 629 (1988).

    Google Scholar 

  15. S.Ruddleson and P.Popper, Acta Crystal, 11, 54 (1958).

    Google Scholar 

  16. Y.Liang and D.Bonnell, Surf. Sci. 310, 128 (1994).

    Google Scholar 

  17. Y. Liang, B. Rothman, and D. Bonnell, J. Vac. Sci. 13, (1994).

  18. U.Diebold, J.M.Pan, and T.E.Madey, Phys. Rev. B 47, 386 (1993).

    Google Scholar 

  19. Z.Zhang and V.E.Henrich, Surf. Sci. 277, 263 (1992).

    Google Scholar 

  20. M. Gautier, J. Duraud, and L. Van, Surf. Sci. 278, L153 (1992).

  21. See ref. 1 chapter 7 for a complete list.

  22. Y. Liang, D. Carroll, and D. Bonnell, Proc. of Mat. Res. Soc. (1994).

  23. D.Carroll, Y.Liang, and D.Bonnell, J. Vac. Sci. and Tech. 13, 2298 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonnell, D.A., Liang, Y. & Carroll, D.L. On the use of scanning tunneling microscopy to investigate surface structure and interface formation in transition metal oxides: SrTiO3 and TiO2 . Interface Sci 2, 365–377 (1995). https://doi.org/10.1007/BF00222624

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00222624

Keywords

Navigation