Skip to main content
Log in

A new snow parameterization for the Météo-France climate model

Part II: validation in a 3-D GCM experiment

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Both observational and numerical studies demonstrate the sensitivity of the atmosphere to variations in the extent and mass of snow cover. There is therefore a need for simple but realistic snow parameterizations in forecast and climate models. A new snow hydrology scheme has recently been developed at Météo-France for use in the ARPEGE climate model and has been successfully tested against local field measurements in stand-alone experiments. This study describes the global validation of the parameterization in a 3-year integration for the present-day climate within the T42L30 version of ARPEGE. Results are compared with those from a control simulation and with available observed climatologies, in order to assess the impact of the new snow parameterization on the simulated surface climate. The seasonal cycle of the Northern Hemisphere snow cover is clearly improved when using the new scheme. The snow pack is still slightly overestimated in winter, but its poleward retreat is better reproduced during the melting season. As a consequence, the modified GCM performs well in simulating the springtime continental heating, which may play a strong role in the simulation of the Asian summer monsoon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barnett TP, Dümenil L, Schlese U, Roeckner E, Latif M (1989) The effect of Eurasian snow cover on regional and global climate variations. J Atmos Sci 46:661–685

    Article  Google Scholar 

  • Blanford HF (1884) On the connexion of Himalayan snowfall and seasons of drought in India. Proc R See London 37:322

    Google Scholar 

  • Brand I, Noilhan J, Bessemoulin P, Mascart P, Haverkamp R, Vauclin M (1993) Bare-ground surface heat and water exchanges under dry conditions: observations and parameterization. Boundary Layer Meteorol 66:173–200

    Google Scholar 

  • Brun E, Martin E, Simon V, Gendre C, Coleou C (1989) An energy and mass model of snow cover suitable for operational avalanche forecasting. J Glaciol 35:333–342

    Google Scholar 

  • Brun E, David P, Sudul M, Brunot G (1992) A numerical model to simulate snow-cover stratigraphy for operational avalanche forecasting. J Glaciol 38:13–22

    Google Scholar 

  • Cariolle D, Déqué M (1986) Southern hemisphere medium-scale waves and total ozone disturbances in a spectral general circulation model. J Geophys Res — Atmos 91:10825–10846

    Google Scholar 

  • Cess RD, Potter GL, Zhang MH, Blanchet JP, Chalita S, Colman R, Dazlich DA, Del Genio AD, Dymnikov V, Galin V, Jerrett D, Keup E, Lacis AA, Le Treut H, Liang XZ, Mahfouf JF, McAvaney BJ, Meleshko VP, Mitchell JFB, Morcrette JJ, Norris PM, Randall DA, Rikus L, Roeckner E, Royer JF, Schlese U, Scheinin DA, Slingo JM, Sokolov AP, Taylor KE, Washington WM, Wetherald RT, Yagai I (1991) Intercomparison of snow-feedback as produced by 17 general circulation models. Science 253:888–892

    Google Scholar 

  • Deardorff JW (1978) Efficient prediction of ground surface temperature and moisture, with inclusion of a layer of vegetation. J Geophys Res — Oceans 83:1889–1903

    Google Scholar 

  • Déqué M, Dreveton C, Braun A, Cariolle D (1994) The ARPEGE/IFS atmosphere model: a contribution to the French community climate modelling. Clim Dyn 10:249–266

    Google Scholar 

  • Dewey KF (1977) Daily maximum and minimum temperature forecasts and the influence of snow cover. Mon Weather Rev 105:1594–1598

    Google Scholar 

  • Dolman AJ, Gregory D (1992) The parametrization of rainfall interception in GCMs. Q J R Meteorol Soc 118:455–467

    Google Scholar 

  • Douville H (1994a) Validation de la climatologie de la neige simulée par la version 1 du modèle Arpège-Climat. Note de Centre GMGEC 31

  • Douville H (1994b) Développement et validation locale d'une nouvelle paramétrisation du manteau neigeux. Note de Centre GMGEC 36

  • Eagleson PS, Fennessey NM, Qinliang W, Rodriguez-Iturbe I (1987) Application of spatial Poisson models to air mass thunderstorm rainfall. J Geophys Res — Atmos 92:9661–9678

    Google Scholar 

  • Foster DJ Jr, Davy RD (1988) Global snow depth climatology, vol USAFETAC/TN - 88/006. USAF Environmental Technical Application Center, Scott Air Force Base, Illinois (Available from the National Climatic Data Center, Asheville, NC 28801)

    Google Scholar 

  • Foster JL, Chang ATC, Hall DK, Rango A (1991) Derivation of snow water equivalent in boreal forests using microwave radiometry. Arctic 44 (Supp I):147–152

    Article  Google Scholar 

  • Hahn DG, Shukla J (1976) An apparent relationship between Eurasian snow cover and Indian monsoon rainfall. J Atmos Sci 33:2461–2462

    Article  Google Scholar 

  • Ingram WJ, Wilson CA, Mitchell JFB (1989) Modelling climate change: an assessment of sea ice and surface albedo feedbacks. J Geophys Res 94:8609–8622

    Google Scholar 

  • Legates DR, Willmott CJ (1990a) Mean seasonal and spatial variability in gauge-corrected, global precipitation. Int J Climatol 10:111–127

    Google Scholar 

  • Legates DR, Willmott CJ (1990b) Mean seasonal and spatial variability in global surface air temperature. Theor Appl Climatol 41:11–21

    Google Scholar 

  • Loth B, Graf HF, Oberhuber JM (1993) Snow cover model for global climate simulations. J Geophys Res — Atmos 98:10451–10464

    Google Scholar 

  • Louis JF (1979) A parametric model of vertical eddy fluxes in the atmosphere. Boundary Layer Meteorol 17:187–202

    Google Scholar 

  • Mahfouf JF, Manzi AO, Noilhan J, Giordani H, Déqué M (1995) The land surface scheme ISBA within the Météo-France climate model ARPEGE. Part I: Implementation and preliminary results. J Climate 8:2039–2057

    Google Scholar 

  • Manabe S (1969) Climate and the ocean circulation: I. The atmospheric circulation and the hydrology of the Earth's surface. Mon Weather Rev 97:739–774

    Google Scholar 

  • Manzi AO (1993) Introduction d'un schéma des transferts sol-végétation-atmosphère dans un modèle de circulation générale et application à la déforestation Amazonienne. Doctorat Thesis, Université Paul Sabatier, Toulouse (France)

    Google Scholar 

  • Manzi AO, Planton S (1994) Implementation of the ISBA parametrization scheme for land surface processes in a GCM — An annual cycle experiment. J Hydrol 155:353–387

    Google Scholar 

  • Marshall S, Oglesby RJ (1994) An improved snow hydrology for GCMs. I. Snow cover fraction, albedo, grain size, and age. Clim Dyn 10:21–37

    Google Scholar 

  • Meehl GA, Washington WM (1990) CO2 climate sensitivity and snow-sea-ice albedo parameterization in an atmospheric GCM coupled to a mixed-layer ocean model. Clim Change 16:2831–306

    Google Scholar 

  • Mintz Y, Serafini YV (1992) A global monthly climatology of soil moisture and water balance. Clim Dyn 8:13–28

    Google Scholar 

  • Namias J (1985) Some empirical evidence for the influence of snow cover on temperature and precipitation. Mon Weather Rev 113:1542–1553

    Google Scholar 

  • Noilhan J, Lacarrère P (1995) GCM gridscale evaporation from mesoscale modelling. J Clim 8:206–223

    Google Scholar 

  • Noilhan J, Planton S (1989) A simple parameterization of land surface processes for meteorological models. Mon Weather Rev 117:536–549

    Google Scholar 

  • Noilhan J, Lacarrère P, Bougeault P (1991) An experiment with an advanced surface parameterization in a meso beta-scale model. Part III: comparison with the HAPEX-MOBILHY dataset. Mon Weather Rev 119:2393–2413

    Google Scholar 

  • Oglesby RJ (1990) Sensitivity of glaciation to initial snow cover, CO2 snow albedo, and oceanic roughness in the NCAR CCM. Clim Dyn 4:219–235

    Google Scholar 

  • Robinson DA, Kukla G (1984) Albedo of dissipating snow cover. J Clim Appl Meteorol 23:1626–1634

    Google Scholar 

  • Robinson D, Kunzi K, Kukla G, Rott H (1984) Comparative utility of microwave and shortwave satellite data for all-weather charting of snow cover. Nature 312:434–435

    Google Scholar 

  • Schutz C, Bregman LD (1987) Global annual snow accumulation by months. Rand Corporation, N-2551-AF (available from Rand Corporation, 1200 Main Street, Santa Monica, CA 90406)

    Google Scholar 

  • Vernekar AD, Zhou J, Shukla J (1995) The effect of Eurasian snow cover on the Indian monsoon. J Clim 8:248–266

    Article  Google Scholar 

  • Verseghy DL (1991) CLASS — a Canadian Land Surface Scheme for GCMS. I. Soil model. Int J Climatol 11:111–133

    Google Scholar 

  • Walsh JE, Tucek DR, Peterson MR (1982) Seasonal snow cover and short-term climatic fluctuations over the United States. Mon Weather Rev 110:1474–1485

    Google Scholar 

  • Webb RS, Rosenzweig CE, Levine ER (1991) A global data set of soil particle size properties, Tech Rep 4286 NASA, GISS, New York

    Google Scholar 

  • Wilson MF, Henderson-Sellers A (1985) A global archive of land cover and soils data for use in general circulation climate models. J Climatol 5:119–143

    Article  Google Scholar 

  • Yasunari T, Kitoh A, Tokioka T (1991) Local and remote responses to excessive snow mass over Eurasia appearing in the northern spring and summer climate — a study with the MRI GCM. J Meteorol Soc Japan 69:473–487

    Google Scholar 

  • Yeh TC, Wetherald RT, Manabe S (1983) A model study of the short-term climatic and hydrologic effects of sudden snowcover removal. Mon Weather Rev 11:1013–1024

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Douville, H., Royer, J.F. & Mahfouf, J.F. A new snow parameterization for the Météo-France climate model. Climate Dynamics 12, 37–52 (1995). https://doi.org/10.1007/BF00208761

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00208761

Keywords

Navigation