Skip to main content
Log in

A new snow parameterization for the Météo-France climate model

Part I: validation in stand-alone experiments

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Both observational studies and numerical experiments demonstrate the sensitivity of the atmosphere to variations in the extent and mass of snow cover. There is therefore a need for simple but realistic snow parameterizations in forecast and climate models. This study describes a new physically-based snow hydrology for use in the Météo-France climate model, together with the ISBA land-surface scheme. A restricted number of parameters has been added, while preserving a single surface energy budget. The ageing process of the snow pack has been introduced through prognostic equations for snow density and snow albedo. Snowmelt computation has been modified over partially snow-covered and vegetated areas. The new scheme has been validated against field measurements in stand-alone simulations forced by observed meteorological conditions. The results show a strong improvement in the model's performance, thereby suggesting that a simple one-layer snow model is able to reproduce the main physical mechanisms governing the snow pack evolution. Part II of the present study will concern the validation in a 3-D experiment within the Météo-France climate model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baker DG, Ruschy DL, Wall DB (1990) The albedo decay of prairie snows. J Appl Meteorol 29:179–187

    Google Scholar 

  • Barnett TP, Dümenil L, Schlese U, Roeckner E, Latif M (1989) The effect of Eurasian snow cover on regional and global climate variations. J Atmos Sci 46:661–685

    Article  Google Scholar 

  • Barry R, Prévost M, Stein J, Plamondon A (1990) Application of a snow cover energy and mass balance model in a Balsam Fir forest. Water Resour Res 26:1079–1092

    Google Scholar 

  • Bernier P, Swanson R (1993) The influence of opening size on snow evaporation n the forests of the Alberta foothills. Can J Forest Res 23:239–244

    Google Scholar 

  • Blondin C (1988) Research on land surface parameterization schemes at ECMWF. In: Parameterization of fluxes over land surface. European Centre for Medium-Range Weather Forecasting, Shinfield Park, Reading RG2 9AX, UK

    Google Scholar 

  • Bonan GB, Pollard D, Thompson SL (1992) Effects of boreal forest vegetation on global climate. Nature 359:716–718

    Article  Google Scholar 

  • Brand I, Noilhan J, Bessemoulin P, Mascart P, Haverkamp R, Vauclin M (1993) Bare-ground surface heat and water exchanges under dry conditions: observations and parameterization. Boundary Layer Meteorol 66:173–200

    Google Scholar 

  • Brun E, Martin E, Simon V, Gendre C, Coleou C (1989) An energy and mass model of snow cover suitable for operational avalanche forecasting. J Glaciol 35:333–342

    Google Scholar 

  • Brun E, David P, Sudul M, Brunot G (1992) A numerical model to simulate snow-cover statigraphy for operational avalanche forecasting. J Glaciol 38:13–22

    Google Scholar 

  • Calder IR (1990) Evaporation in the uplands. John Wiley, Chichester New York

    Google Scholar 

  • Cess RD, Potter GL, Zhang MH, Blanchet JP, Chalita S, Colman R, Dazlich DA, Del Genio AD, Dymnikov V, Galin V, Jerrett D, Keup E, Lacis AA, Le Trent H, Liang XZ, Mahfouf JF, McAvaney BJ, Meleshko VP, Mitchell JFB, Morcrette JJ, Norris PM, Randall DA, Rikus L, Roeckner E, Royer JF, Schlese U, Scheinin DA, Slingo JM, Sokolov AP, Taylor KE, Washington WM, Wetherald RT, Yagai I (1991) Intercomparison of snow-feedback as produced by general circulation models. Science 253:888–892

    Google Scholar 

  • Cohen J, Rind D (1991) The effect of snow cover on the climate. J Clim 4:689–706

    Google Scholar 

  • Deardorff JW (1978) Efficient prediction of ground surface temperature and moisture, with inclusion of a layer of vegetation. J Geophys Res — Oceans 83:1889–1903

    Google Scholar 

  • Déqué M, Dreveton C, Braun A, Cariolle D (1994) The ARPEGE/IFS atmosphere model: a contribution to the French community climate modelling. Clim Dyn 10:249–266

    Article  Google Scholar 

  • Dewey KF (1977) Daily maximum and minimum temperature forecasts and the influence of snow cover. Mon Weather Rev 105:1594–1598

    Google Scholar 

  • Dickinson RE, Henderson-Sellers A, Kennedy PJ, Wilson MF (1986) NCAR Technical Note: Surface physics parameterization package for the NCAR Community Climate Model. National Center for Atmospheric Research, Boulder, Colorado

    Google Scholar 

  • Douville H (1994a) Validation de la climatologie de la neige simulée par la version 1 du modèle Arpège-Climat. Note de Centre GMGEC 31

  • Douville H (1994b) Ddveloppement et validation locale d'une nouvelle paramétrisation du manteau neigeux. Note de Centre GMGEC 36

  • Gold LW (1958) Changes in a shallow snow cover subject to a temperate climate. J Glaciol 3:218–222

    Google Scholar 

  • Groisman PY, Karl TR, Knight RW (1994) Observed impact of snow cover on the heat balance and the rise of continental spring temperatures. Science 263:198–200

    Google Scholar 

  • Gutzler DS, Rosen RD (1992) Interannual variability of wintertime snow cover across the Northern Hemisphere. J Clim 5:1441–1447

    Google Scholar 

  • Ingram WJ, Wilson CA, Mitchell JFB (1989) Modelling climate change: an assessment of sea ice and surface albedo feedbacks. J Geophys Res 94:8609–8622

    Google Scholar 

  • Iwasaki T (1991) Year-to-year variation of snow cover area in the northern hemisphere. J Meteorol Soc Japan 69:209–217

    Google Scholar 

  • Kondo J, Yamazaki T (1990) A prediction model for snowmelt, snow surface temperature and freezing depth using a heat balance method. J Appl Meteorol 29:375–384

    Google Scholar 

  • Leonard RE, Eschner AR (1968) Albedo of intercepted snow. Water Resour Res 4:931–935

    Google Scholar 

  • Longley RW (1960) Snow depth and snow density at Resolute, Northwest Territories. J Glaciol 3:733–738

    Google Scholar 

  • Loth B, Graf HF, Oberhuber JM (1993) Snow cover model for global climate simulations. J Geophys Res-Atmos 98:10451–10464

    Google Scholar 

  • Louis JF (1979) A parametric model of vertical eddy fluxes in the atmosphere. Boundary Layer Meteorol 17:187–202

    Google Scholar 

  • Lundberg A, Halldin S (1994) Evaporation of intercepted snow: analysis of governing factors. Water Resour Res 30:2587–2598

    Google Scholar 

  • Mahfouf JF, Manzi AO, Noilhan J, Giordani H, Deque M (1995) The land surface scheme ISBA within the Météo-France climate model ARPEGE. Part I: Implementation and preliminary results. J Climate 8:2039–2057

    Google Scholar 

  • Manabe S (1969) Climate and the ocean circulation: I. The atmospheric circulation and the hydrology of the Earth's surface. Mon Weather Rev 97:739–774

    Google Scholar 

  • Manzi AO (1993) Introduction d'un schéma des transferts sol-végétation-atmosphère dans un modèle de circulation générale et application à la déforestation Amazonienne. Doctorat Thesis, Université Paul Sabatier, Toulouse (France)

    Google Scholar 

  • Manzi AO, Planton S (1994) Implementation of the ISBA parametrization scheme for land surface processes in a GCM — An annual cycle experiment. J Hydrol 155:353–387

    Google Scholar 

  • Meehl GA, Washington WM (1990) CO2 climate sensitivity and snow-sea-ice albedo parameterization in an atmospheric GCM coupled to a mixed-layer ocean model. Clim Change 16:283–306

    Google Scholar 

  • Namias J (1985) Some empirical evidence for the influence of snow cover on temperature and precipitation. Mon Weather Rev 113:1542–1553

    Google Scholar 

  • Noilhan J, Planton S (1989) A simple parameterization of land surface processes for meteorological models. Mon Weather Rev 117:536–549

    Google Scholar 

  • Noilhan J, Lacarrere P (1995) GCM gridscale evaporation from mesoscale modelling. J Clim 8:206–223

    Google Scholar 

  • Noilhan J, Lacarrere P, Bougeault P (1991) An experiment with an advanced surface parameterization in a meso beta-scale model. Part III: comparison with the HAPEX-MOBILHY dataset. Mon Weather Rev 119:2393–2413

    Google Scholar 

  • Ohta T, Hashimoto T, Ishibashi H (1993) Energy budget comparison of snowmelt rates in a deciduous forest and an open site. Ann Glaciol 18:53–59

    Google Scholar 

  • Pitman AJ, Yang ZL, Cogley JC, Henderson-Sellers A (1991) Description of bare essentials of surface transfer for the Bureau of Meteorology Research Centre AGCM, BMRC Res Rep, vol 32. BMRC, Melbourne, Australia

    Google Scholar 

  • Robinson DA, Kukla G (1984) Albedo of dissipating snow cover. J Climate Appl Meteorol 23:1626–1634

    Google Scholar 

  • Robinson DA, Kukla G (1985) Maximum surface albedo of seasonally snow-covered lands in the Northern Hemisphere. J Climate Appl Meteorol 24:402–411

    Google Scholar 

  • Robock A, Vinnikov KY, Schlosser CA, Speranskaya NA, Xue YK (1995) Use of midlatitude soil moisture and meteorological observations to validate soil moisture simulations with biosphere and bucket models. J Clim 8:15–35

    Google Scholar 

  • Satterlund D (1979) An improved equation for estimating longwave radiation from the atmosphere. Water Resour Res 15:2757–2782

    Google Scholar 

  • Sellers PJ, Mintz Y, Sud YC, Dalcher A (1986) A simple biosphere model (SiB) for use within general circulation models. J Atmos Sci 43:505–531

    Google Scholar 

  • Staley DO, Jurica GM (1972) Effective atmospheric emissivity under clear skies. J Appl Meteorol 11:349–356

    Google Scholar 

  • Thomas G, Rowntree PR (1992) The boreal forests and climate. Q J R Meteorol Soc 118:469–497

    Article  Google Scholar 

  • Verseghy DL (1991) CLASS — a Canadian Land Surface Scheme for GCMS. 1. Soil model. Int J Climatol 11:111–133

    Google Scholar 

  • Verseghy DL, McFarlane NA, Lazare M (1993) CLASS — A Canadian land surface scheme for GCMS. 2. Vegetation model and coupled runs. Int J Climatol 13:347–370

    Google Scholar 

  • Vinnikov KY, Yeserkepova IB (1991) Soil moisture: empirical data and model results. J Clim 4:66–79

    Google Scholar 

  • Walsh JE, Tucek DR, Peterson MR (1982) Seasonal snow cover and short-term climatic fluctuations over the United States. Mon Weather Rev 110:1474–1485

    Google Scholar 

  • Walsh JE, Jasperson WH, Ross B (1985) Influences of snow cover and soil moisture on monthly air temperature. Mon Weather Rev 113:756–768

    Google Scholar 

  • Yamazaki T, Kondo J (1992) The snowmelt and heat balance in snow-covered forested areas. J Appl Meteorol 31:1322–1327

    Google Scholar 

  • Yasunari T, Kitoh A, Tokioka T (1991) Local and remote responses to excessive snow mass over Eurasia appearing in the northern spring and summer climate — a study with the MRI GCM. J Meteorol Soc Japan 69:473–487

    Google Scholar 

  • Yeh TC, Wetherald RT, Manabe S (1983) A model study of the short-term climatic and hydrologic effects of sudden snowcover removal. Mon Weather Rev 11:1013–1024

    Google Scholar 

  • Yen Y (1981) Review of thermal properties of snow, ice and seaice. CRREL Rep, 81-10

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Douville, H., Royer, J.F. & Mahfouf, J.F. A new snow parameterization for the Météo-France climate model. Climate Dynamics 12, 21–35 (1995). https://doi.org/10.1007/BF00208760

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00208760

Keywords

Navigation