Skip to main content
Log in

The effect of the environment on the permeability and composition of Citrus leaf cuticles

II. Composition of soluble cuticular lipids and correlation with transport properties

  • Published:
Planta Aims and scope Submit manuscript

Abstract

The constituents of the soluble cuticular lipids (SCL) of the leaf blades of Citrus aurantium L. were identified by gas chromatography-mass spectrometry and quantified. Major components were 1-alkanols (C24 to C40), n-alkyl esters (C36 to C56), n-alkanoic acids (C28 to C34), n-alkanes (C22 to C40) and triterpenones, while n-alkanals (C29 to C38), sterols, and alkyl benzenes (molecular weights 260, 274 and 288) made minor contributions. Leaf age and side significantly affected the quantitative composition of SCL. Increased day temperature during the development of leaves led to decreased amounts per unit area of n-alkanes, 1-alkanols, n-alkanoic acids and n-alkyl esters while increased night temperatures resulted in increased amounts of n-alkanes n-alkanoic acids and 1-alkanols. Relative humidity had no effect on the amounts or composition of SCL. The permeability of cuticular membranes to water (described in part I of this paper) and the composition of SCL were not related. A model for the molecular structure of the transport-limiting barrier of plant cuticles and for the transport of water across it is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CM:

cuticular membrane

GC:

gas chromatogra-phy

MS:

mass spectroscopy

TLC:

thin-layer (planar) chromatography

SCL:

soluble cuticular lipids

References

  • Archer, R.J. La Mer, V.K. (1955) The rate of evaporation of water through fatty acid monolayers. J. Phys. Chem. 59, 200–208

    Google Scholar 

  • Baker, E.A., Hunt, G.M. (1981) Developmental changes in leaf epicuticular waxes in relation to foliar penetration. New Phytol. 88, 731–747

    Google Scholar 

  • Basson, I., Reynhardt, E.C. (1988a) An investigation of the structures and molecular dynamics of natural waxes. I. Beeswax. J. Phys. D 21, 1421–1428

    Google Scholar 

  • Basson, I., Reynhardt, E.C. (1988b) An investigation of the structures and molecular dynamics of natural waxes. II. Carnauba wax. J. Phys. D 21, 1429–1433

    Google Scholar 

  • Basson, I., Reynhardt, E.C. (1988c) An investigation of the structures and molecular dynamics of natural waxes. III. Montan wax. J. Phys. D 21, 1434–1437

    Google Scholar 

  • Bengtson, C., Larsson, S., Liljenberg, C. (1978) Effects of water stress on cuticular transpiration rate and amount and composition of epicuticular wax in seedlings of six oat varieties. Physiol. Plant. 44, 319–324

    Google Scholar 

  • Bukovac, M.J., Flore, J.A., Baker, E.A. (1979) Peach leaf surfaces: changes in wettability, retention, cuticular permeability, and epicuticular wax chemistry during expansion with special reference to spray application. J. Am. Soc. Hortic. Sci. 104, 611–617

    Google Scholar 

  • Cussler, E.L., Hughes, S.E., Ward, W.J., Aris, R. (1988) Barrier membranes. J. Membr. Sci. 38, 161–174

    Google Scholar 

  • Denna, D.W. (1970a) Transpiration and the waxy bloom in Brassica oleracea L. Aust. J. Biol. Sci. 23, 27–31

    Google Scholar 

  • Denna, D.W. (1970b) Leaf wax and transpiration in Brassica oleracea L. J. Am. Soc. Hortic. Sci. 95, 30–32

    Google Scholar 

  • Edwards, R.T. (1958) Solid petroleum hydrocarbons and their effect on wax properties. J. Tech. Assoc. Pulp. Paper Ind. 41, 267–274

    Google Scholar 

  • Fox, R.C. (1958) The relationship of wax crystal structure to the water vapor transmission rate of wax films. J. Tech. Assoc. Pulp. Paper Ind. 41, 283–289

    Google Scholar 

  • Franz, H.P., Bartusch, W., Heiss, R. (1972) Untersuchungen über die Wasserdampfdurchlässigkeit paraffinbeschichteter Papiere. Fette, Seifen, Anstrichm. 74, 469–475

    Google Scholar 

  • Geyer, U., Schönherr, J. (1989) The effect of the environment on the permeability and composition of Citrus leaf cuticles. I. Water permeability of isolated cuticular membranes. Planta 180, 147–153

    Google Scholar 

  • Haas, K., Schönherr, J. (1979) Composition of soluble cuticular lipids and water permeability of cuticular membranes from Citrus leaves. Planta 146, 399–403

    Google Scholar 

  • Horrocks, R.L. (1964) Wax and the water vapour permeability of apple cuticle. Nature 203, 547

    Google Scholar 

  • Hunt, G.M., Baker, E.A. (1982) Developmental and environmental variations in plant epicuticular waxes: some effects on the penetration of naphthylacetic acid. In: The plant cuticle, pp. 279–292, Cutler, D.F., Alvin, K.L., Price, C.E., eds. Academic Press, London

    Google Scholar 

  • Larsson, S., Sveningsson, M. (1986) Cuticular transpiration and epicuticular lipids of primary leaves of barley (Hordeum vulgare). Physiol. Plant. 68, 13–19

    Google Scholar 

  • Le Roux, J.H. (1969) Fischer-Tropsch waxes. II. Crystallinity and physical properties. J. Appl. Chem. 19, 86–88

    Google Scholar 

  • Luorens, J.A.J., Reynhardt, E.C. (1979) NMR investigation in Fischer-Tropsch waxes. J. Phys. D 12, 1963–1972

    Google Scholar 

  • Meyer, M. (1938) Die submikroskopische Struktur der kutinisierten Zellmembranen. Protoplasma 29, 552–586

    Google Scholar 

  • Possingham, J.V., Chambers, T.C., Radler, F., Grncarevic, M. (1967) Cuticular transpiration and wax structure and composition of leaf and fruit of Vitis vinifera. Austr. J. Biol. Sci. 20, 1149–1153

    Google Scholar 

  • O'Toole, C.T., Cruz, R.T., Seiber, J.N. (1979) Epicuticular wax and cuticular resistance in rice. Physiol. Plant. 47, 239–244

    Google Scholar 

  • Rama Das, V.S., Raja Reddy, K., Krishna, C.M., Samba Murthy, S., Rao, J.V.S. (1979) Transpirational rates in relation to quality of leaf epicuticular waxes. Indian J. Exp. Biol. 17, 158–163

    Google Scholar 

  • Reynhardt, E.C. (1985) NMR investigation of Fischer-Tropsch waxes. II. Hard wax. J. Phys. D 18, 1185–1197

    Google Scholar 

  • Riederer, M., Schönherr, J. (1986) Quantitative gas chromatographic analysis of methyl esters of hydroxy fatty acids derived from plant cutin. J. Chromatogr. 360, 151–161

    Google Scholar 

  • Roelofsen, P.A. (1952) On the submicroscopic structure of cuticular cell walls. Acta Bot. Neerland. 1, 99–114

    Google Scholar 

  • Schönherr, J. (1982) Resistance of plant surfaces to water loss: transport properties of cutin, suberin and associated lipids. In: Encyclopedia of plant physiology, N.S., vol. 12B: Physiological plant ecology II, pp. 153–179, Lange, O.L., Nobel, P.S., Osmond, C.B., Ziegler, H., eds. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Schönherr, J., Riederer, M. (1986) Plant cuticles sorb lipophilic compounds during enzymatic isolation. Plant Cell Environ. 9, 459–466

    Google Scholar 

  • Schönherr, J., Riederer, M. (1988) Desorption of chemicals from plant cuticles: Evidence for asymmetry. Arch. Environ. Contam. Toxicol. 17, 13–19

    Google Scholar 

  • Schönherr, J., Riederer, M. (1989) Foliar penetration and accumulation of organic chemicals in plant cuticles. Rev. Environ. Contarn. Toxicol. 108, 1–70

    Google Scholar 

  • Sitte, P., Rennier, R. (1963) Untersuchungen an cuticularen Zellwandschichten. Planta 60, 19–40

    Google Scholar 

  • Small, D.M. (1986) The physical chemistry of lipids. Handbook of lipid research, vol. 4. Plenum Press, New York

    Google Scholar 

  • Stannett, V., Yasuda, H. (1964) Permeability. In: Crystalline olefin polymers, vol. 2, pp. 131–184. Raff, R.A.V., Doak, K.W., eds. Interscience Publishers, New York

    Google Scholar 

  • Svenningsson, M. (1988) Epi and intracuticular lipids and cuticular transpiration rates of primary leaves of eight barley (Hordeum vulgare) cultivars. Physiol. Plant. 73, 512–517

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The authors are indebted to Dr. R. Winkler and H. Krause, Laboratorium für Strukturchemie des Fachbereichs Chemie, Biologie und Geowissenschaften, Technische Universität München, FRG, for performing the GC-MS analyses and their valuable help in the identification of SCL constituents. This work has been supported by the Deutsche Forschungsgemeinschaft and the Bayerische Staatsministerium für Wissenschaft und Kunst.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Riederer, M., Schneider, G. The effect of the environment on the permeability and composition of Citrus leaf cuticles. Planta 180, 154–165 (1990). https://doi.org/10.1007/BF00193990

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00193990

Key words

Navigation