Skip to main content
Log in

Body composition and the evolution of the Macropodidae (Potorous, Dendrolagus, and Macropus)

  • Published:
Anatomy and Embryology Aims and scope Submit manuscript

Summary

The segmental distribution of body weight and the proportions of skin, muscle, and bone are compared for three genera of the Macropodidae (Potorous, Dendrolagus, and Macropus) and one genus of the Petauridae (Pseudocheirus). Potorous and Macropus possess high proportions of muscle mass to total body weight, high concentrations of musculature in the lumbar extensors, thigh, and tail, and disproportionate ratios of forelimb: hindlimb bone and forelimb: hindlimb muscle which correspond to disproportions of intermembral length. These species converge with high-speed terrestrial runners in some traits and remain distinctive in others. Macropus, larger, more muscular, and faster than Potorous, appears to store and return energy to the hopping cycle more efficiently. Dendrolagus has less than three-fourths the musculature of the other macropod genera, low proportions of the back extensor muscles compared to the other macropods, and relatively more equal ratios of forelimb: hindlimb bone and forelimb: hindlimb muscle. This species converges with slow-moving arboreal climbers such as Pseudocheirus. These data on body mass and tissue proportions translate directly into center of gravity, strength-to-weight ratio, and muscular (kinetic) chains, key elements of macropod evolution. The geometric similarity of muscle between smaller potoroids and larger macropodids, an assumption critical to allometric comparison, is not confirmed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alexander RMcN, Vernon A (1975) The mechanics of hopping by kangaroos (Macropodidae). J Zool 175:265–303

    Google Scholar 

  • Archer M, Clayton G (eds) (1984) Vertebrate Zoogeography and Evolution in Australasia (Animals in Space and Time). Hesperian Press, Western Australia

    Google Scholar 

  • Au D, Weihs D (1980) At high speeds dolphins save energy by leaping. Nature 284:548–550

    Google Scholar 

  • Badoux DM (1965) Some notes on the functional anatomy of Macropus giganteus Zimm. with general remarks on the mechanics of bipedal leaping. Acta Anat 62:418–433

    Google Scholar 

  • Bauschulte C (1972) Morphologische und biomechanische Grundlagen einer funktionellen Analyse der Muskeln der Hinterextremität (Untersuchung an quadrupeden Affen und Känguruhs). Z Anat Entwicklungsgesch 138:167–214

    Google Scholar 

  • Bennet-Clark H (1977) Scale effects in jumping animals. In: Pedley TJ (ed) Scale Effects in Animal Locomotion. Academic Press, New York, pp 185–201

    Google Scholar 

  • Bensley BA (1903) On the evolution of the Australian Marsupialia with remarks on the relationships of the marsupials in general. Trans Linn Soc London (2) 9:83–217

    Google Scholar 

  • Biewener AA (1989) Scaling body support in mammals: limb posture and muscle mechanics. Science 245:45–48

    Google Scholar 

  • Biewener A, Alexander R McN, Heglund NC (1981) Elastic energy storage in hopping of kangaroo rats (Dipodomys spectabilis). J Zool 195:369–383

    Google Scholar 

  • Biewener AA, Blickhan R, Perry AK, Heglund NC, Taylor CR (1988) Muscle forces during locomotion in kangaroo rats: force platform and tendon buckle measurements compared. J Exp Biol 137:191–205

    Google Scholar 

  • Biewener AA, Blickhan R (1988) Kangaroo rat locomotion: design for elastic energy storage or acceleration? J Exp Biol 140:243–255

    Google Scholar 

  • Blake RW (1983) Energetics of leaping in dolphins and other aquatic animals. J Mar Biol Assoc UK 63:61–70

    Google Scholar 

  • Buchmann OLK, Guiler ER (1974) Locomotion in the potoroo. J Mammal 55:203–206

    Google Scholar 

  • Carlsson A (1914) Über Dendrolagus dorianus. Zool Jahrb Abt Syst Oekol 36:547–617

    Google Scholar 

  • Collins LR (1973) Monotremes and marsupials. A reference for zoological institutions. Smithsonian Institution Press, pp 323

  • Dawson L, Flannery T (1985) Taxonomic and phylogenetic status of living and fossil kangaroos and wallabies of the genus Macropus Shaw (Macropodidae: Marsupialia), with a new subgeneric name for the larger wallabies. Aust J Zool 33:473–498

    Google Scholar 

  • Dawson TJ, Taylor CR (1973) Energetic cost of locomotion in kangaroos. Nature 246:313–314

    Google Scholar 

  • Dyson GHG (1970) The Mechanics of Athletics, 5th edn. Univ London Press, London

    Google Scholar 

  • Eibl M, Ganslosser U, Johnson PM. Comparative study of bipedal hopping in several species of Macropodidae (no date)

  • Eisenberg JF (1981) The Mammalian Radiations. An Analysis of Trends in Evolution, Adaptation, and Behavior. Univ Chicago Press, Chicago

    Google Scholar 

  • Emerson SB (1985) Jumping and Leaping. In: Hildebrand M, Bramble DM, Liem KF, Wake DB (eds) Vertebrate Morphology. Belknap Press, Harvard, pp 58–72

    Google Scholar 

  • Fokin I (1978) The locomotion and morphology of the locomotory organs in jerboas. (In Russian). Leningrad Acad Sci SSR Zool

  • Gambaryan PP (1974) How Mammals Run. Halsted Press, New York

    Google Scholar 

  • Ganslosser U (1980) Vergleichende Untersuchungen zur Kletterfähigkeit einiger Baumkänguruh-Arten (Dendrolagus. Marsupialia). Zool Anz 205:43–66

    MATH  Google Scholar 

  • Ganslosser U (1981a) Vergleichende Untersuchungen zur Kletterfähigkeit einiger Baumkänguruharten (Dendrolagus), Müller (1939). II. Raum-zeitlicher Ablauf des Stemmkletterns. Zool Anz 206:62–86

    Google Scholar 

  • Ganslosser U (1981b) Muskelansätze, Knochenstärke, Hand- und Fusswurzelskelett einiger Baumkänguruharten (Dendrolagus, Müller 1839). Säugetierk Mitt 29:68–78

    Google Scholar 

  • Ganslosser U (1983) Quantitative Untersuchungen zum Sozialverhalten des Doria-Baumkänguruhs (Dendrolagus dorianus, Ramsay, 1883) in Gefangenschaft. I. Struktur und Entwicklung einer Familiengruppe. Zool Anz 211:1–29

    Google Scholar 

  • Ganslosser U (1988) Känguruhs. In: Grzimek B (ed) Grzimek's Encyclopaedie. Säugetiere, vol I. Kindler, Munich, pp 345–387

    Google Scholar 

  • Grand TI (1972) A mechanical interpretation of terminal branch feeding. J Mammal 53:198–201

    Google Scholar 

  • Grand TI (1977) Body Weight: Its relation to tissue composition, segment distribution, and motor function. Part I, Interspecific comparisons. Am J Physical Anthropol 47:211–240

    Google Scholar 

  • Grand TI (1978) Adaptations of tissues and limb segments to facilitate moving and feeding in arboreal folivores. In: Montgomery GG (ed) The Ecology of Arboreal Folivores. Smithsonian Institution Press, Washington DC, pp 231–242

    Google Scholar 

  • Grand TI (1983a) The anatomy of growth and its relation to locomotor capacity in Macaca. In: Eisenberg JF, Kleiman DG (eds) Advances in the Study of Mammalian Behavior. Special Publ no 7, American Society of Mammalogists, pp 5–23

  • Grand TI (1983b) Body Weight: Its relationship to tissue composition, segmental distribution of mass, and motor function. Part III, The Didelphidae of French Guyana. Aust J Zool 31:299–312

    Google Scholar 

  • Grand TI (1984) Motion economy within the canopy: four strategies for mobility. In: Rodman PS, Cant JGH (eds) Adaptations for Foraging in Nonhuman Primates. Contributions to an Organismal Biology of Prosimians, Monkeys, and Apes. Columbia Univ Press, New York, pp 54–72

    Google Scholar 

  • Grand TI (1990a) Patterns of muscular growth among the African Bovids. Applied An Behav Sci (in press)

  • Grand TI (1990b) The functional anatomy of body weight. In: Damuth J, MacFadden (eds) Reconstructing the Body Weight of Mammals. Cambridge Univ Press (in press)

  • Grand TI, Lorenz R (1968) Functional analysis of the hip joint of Tarsius bancanus (Horsfield, 1821) and Tarsius syrichta (Linnaeus, 1758). Folia Primatol 9:161–181

    Google Scholar 

  • Gregory WK (1951) Evolution Emerging. A Survey of Changing Patterns from Primeval Life to Man. 2 vols. Macmillan, New York

    Google Scholar 

  • Grzimek B, Heinemann D (1972) The Kangaroos. In: Grzimek B (ed) Grzimek's Animal Encycloaedia vol 10. Mammals I. Van Nostrand Reinhold, New York, pp 147–173

    Google Scholar 

  • Groves C (1982) The systematics of tree kangaroos (Dendrolagus; Marsupialia, Macropodidae). Aust Mammal 5:157–186

    Google Scholar 

  • Günther M (1985) Biomechanische Voraussetzungen beim Absprung des Senegalgalagos. Z Morphol Anthropol 75:287–306

    Google Scholar 

  • Hopwood PR (1981) Carcass muscle weight distribution and yield: a Comparison between Grey Kangaroos, Macropus giganteus, and Red Kangaroos, M. trufus. Aust Wildlife Res 8:263–268

    Google Scholar 

  • Hopwood PR, Griffiths DA (1984) Carcass Muscle-Weight Distribution and Yield: a Comparison between Male and Female Grey kangaroos, Macropus giganteus. Aust Wildlife Res 11:299–302

    Google Scholar 

  • Howell AB (1965) Speed in Animals. Their specialization for running and leaping. Hafner, New York

    Google Scholar 

  • Van Ingen Schenau GJ, Bobbert MF, Rozendal RH (1987) The unique action of biarticular muscles in complex movements. J Anat 155:1–5

    Google Scholar 

  • Inman VT, Ralston HJ, Todd F (1981) Human Walking. Williams and Wilkins, Baltimore

    Google Scholar 

  • Jouffroy F-K (1971) Musculature des Membres. In: Traité de Zoologie. XVI (fascic 3), Masson et Cie, Paris

    Google Scholar 

  • Jüschke S (1972) Untersuchungen zur funktionellen Anpassung der Rückenmuskulatur und der Wirbelsäule quadrupeder Affen und Känguruhs. Z Anat Entwicklungsgesch 137:47–85

    Google Scholar 

  • Keys A, Brozek J (1953) Body fat in adult man. Physiol Rev 33:245–325

    Google Scholar 

  • Lamprey H (1964) Estimation of the large mammal densities, biomass and energy exchange in the Tarangire Game Reserve and the Masai Steppe in Tanganyika. East Afr Wildlife 2:1–47

    Google Scholar 

  • Laws K (1984) The Physics of Dance. Schirmer Books, New York

    Google Scholar 

  • Lessertisseur J (1971) Les proportions des membres chez les marsupiaux sauteurs bipedes. Parallele avec les Rongeurs et Primates d'adaptation comparable. Mammalia 35:315–340

    Google Scholar 

  • Mayr E (1982) The Growth of Biological Thought. Diversity, Evolution, and Inheritance. Belknap Press, Cambridge, Mass

    Google Scholar 

  • McMahon TA (1984) Muscles, Reflexes, and Locomotion. Princeton University Press, Princeton

    Google Scholar 

  • McMahon TA, Valiant G, Frederick EC (1987) Groucho running. J Applied Physiol 62(6):2326–2337

    Google Scholar 

  • Miller DI, Nelson RI (1973) Biomechanics of Sport. A Research Approach. Lea and Febiger, Philadelphia

    Google Scholar 

  • Moeller H (1976a) Dendrolagus dorianus — Bewegungsweisen. Publ Wiss Film Sekt Biol 9 (2): 218–233

    CAS  PubMed  Google Scholar 

  • Moeller H (1976b) Dendrolagus goodfellowi — Bewegungsweisen. Publ Wiss Film Sekt Biol 9 (2): 202–217

    Google Scholar 

  • Moeller H (1988) Baumkänguruhs. In: Grzimek B (ed) Grzimek's Encyclopaedie. Säugetiere, vol I. Kindler, Munich, pp 387–392

    Google Scholar 

  • Müller RJ (1930) Die Mechanik der syndactylus Zehen von Macropus und anderer Beuteltiere und ihre Verwandlung als Putzorgan. Z Morphol Ökol Tiere 17:154–218

    Google Scholar 

  • Murray P (1984) Extinctions downunder; A bestiary of extinct Australian late Pleistocene monotremes and marsupials. In: Martin PS, Klein RG (eds) Quaternary Extinctions. Univ Arizona Press

  • Nowak RM, Paradiso JL (1983) Walker's Mammals of the World, 2 vols, 4th edn, Johns Hopkins, Baltimore

    Google Scholar 

  • Pauwels F (1965) Gesammelte Abhandlungen zur functionellen Anatomie des Bewegungsapparates, Springer, Berlin

    Google Scholar 

  • Peters A, Preuschoft H (1984) External biomechanics of leaping in Tarsius and its morphological and kinematic consequences. In: Niemitz C (ed) Biology of Tarsiers. G Fischer, Stuttgart, pp 227–255

    Google Scholar 

  • Procter-Gray E, Ganslosser U (1986) The individual behaviors of Lumholtz's tree-kangaroo: repertoire and taxonomic implications. J Mammal 67:343–352

    Google Scholar 

  • Schmidt-Nielsen K (1984) Scaling. Why is animal size so important? Cambridge Univ Press, Cambridge

    Google Scholar 

  • Schneider KM (1954) Vom Baumkänguruh (Dendrolagus leucogenys Matschie). Der Zool Garten 21 (1/2):63–106

    Google Scholar 

  • Sewertzoff AN (1931) Morphologische Gesetzmäßigkeiten der Evolution. Gustav Fischer, Jena

    Google Scholar 

  • Slijper EJ (1946) Comparative Biologic-Anatomical Investigations on the Vertebral Column and spinal musculature of mammals. Verh K Ned Akad Wet Natuurk Reeks XLII, 1–128

    Google Scholar 

  • Stahl WR, Gummerson JY (1967) Systematic allometry in five species of adult primates. Growth 31:21–34

    Google Scholar 

  • Stirling I, McEwan EH (1975) The caloric value of whole ringed seals (Phoca hispida) in relation to polar bear (Ursus maritimus) ecology and hunting behavior. Can J Zool 53:1021–1027

    Google Scholar 

  • Strahan R (ed) (1983) The Australian Museum Complete Book of Australian Mammals. Angus and Robertson, UK

    Google Scholar 

  • Tate GL (1948) On the anatomy and phytogeny of the Macropodidae. Bull Am Mus Nat Hist 91:233–352

    Google Scholar 

  • Taylor CR (1978) Why change gaits? Recruitment of muscles and muscle fibers as a function of speed and gait. Am Zool 18:153–161

    Google Scholar 

  • Windsor DE, Dagg AI (1971) The gaits of the Macropodinae (Marsupialia). J Zool 163:165–175

    Google Scholar 

  • Wood Jones FW (1969) The Mammals of South Australia. Parts I–III 1923–1925, Handbook of the Flora and Fauna of South Australia. AB James, Government Printer, Adelaide

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grand, T.I. Body composition and the evolution of the Macropodidae (Potorous, Dendrolagus, and Macropus). Anat Embryol 182, 85–92 (1990). https://doi.org/10.1007/BF00187530

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00187530

Key words

Navigation