Skip to main content
Log in

Transformation of 16-dehydroprogesterone and 17α-hydroxyprogesterone by Mucor piriformis

  • Biotechnology
  • Original Paper
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Mucor piriformis was used to study the mode of transformation of 16-dehydroprogesterone (I, pregna-4, 16-diene-3, 20-dione) and 17α-hydroxyprogesterone (II, 17α-hydroxypregn-4-ene-3, 20-dione). Biotransformation products formed from I were 14α-hydroxypregna-4, 16-diene-3, 20-dione (Ia), 7α, 14α-dihydroxypregna-4, 16-diene-3, 20-dione (Ib), 3β, 7α, 14α-trihydroxy-5α-pregn-16-en-20-one (Ic), and 3α, 7α, 14α-trihydroxy-5α-pregn-16-en-20-one (Id). Metabolites Ic and Id appear to be hitherto unknown. Time-course studies suggested that the transformation is initiated by hydroxylation at the 14α-position (Ia) followed by hydroxylation at the 7α-position (Ib). Microsomes (105,000 g sediment) prepared from 16-dehydroprogesterone-induced cells hydroxylate I to its 14α-hydroxy derivative (Ia) in the presence of NADPH. Incubation of Ia with the organism resulted in the formation of Ib, Ic and Id. Biotransformation products formed from compound II were 17α, 20α-dihydroxypregn-4-en-3-one (IIa), 7α, 17α-dihydroxypregn-4-ene-3, 20-dione (IIb), 6β, 17α, 20α-trihydroxypregn-4-en-3-one (IIc) and 11α, 17α, 20α-trihydroxypregn-4-en-3-one (IId). Time-course studies indicated that IIa is the initial product formed, which is further hydroxylated either at the 6β or 11α position. Incubation of IIa with the organism resulted in the formation of IIc and IId. Reduction of the 4-en-3-one system and 20-keto group has not been observed before in organisms of the order Mucorales. In addition, M. piriformis has been shown to carry out hydroxylation at the C-6, C-7, C-11 and C-14 positions in the steroid molecules tested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bhacca NS, Williams DH (1964) Application of NMR spectroscopy in organic chemistry. Illustrations from the steroid field. Holden-Day, San Francisco, USA, pp 19–24

    Google Scholar 

  • Bridgeman JE, Cherry PC, Clegg AS, Evans JM, Jones ERH, Kasal A, Kumar V, Meakins GD, Morisawa Y, Richards EE, Woodgate PD (1970) Microbiological hydroxylation of steroids. Part I. Proton magnetic resonance spectra of ketones, alcohols and acetates in the androstone, pregnane and estrane series. J Chem Soc C-:250–257

    Google Scholar 

  • Budzikiewicz H (1972) Steroids. In: Biochemical applications in mass spectrometry. G. R. Waller (ed) Wiley-Interscience, New York, pp 251–289

    Google Scholar 

  • Charney W, Herzog HL (1967) Microbial transformations of steroids: a handbook. Academic press, New York

    Google Scholar 

  • Eroshin VK (1962) Capacity of Mucorales fungi to oxidize steroid S. Mikrobiologiya 31:608–615

    CAS  Google Scholar 

  • Holland HL, Riemland E (1985) Microbial hydroxylation of steroids 10. Rearrangement during epoxidation and hydroxylation and the stepwise nature of these enzymic reactions. Can J Chem 63:1121–1126

    Article  CAS  Google Scholar 

  • Holland HL, Thomas EM (1982) Microbial hydroxylation of steroids. 8. Incubation of Cn halo- and other substituted steroids with Cn hydroxylating fungi. Can J Chem 60:160–164

    Article  CAS  Google Scholar 

  • Holland HL, Chenchaiah PC, Thomas EM, Mader B, Dennis MJ (1984) Microbial hydroxylation of steroids. 9. Epoxidation of 6-3-keto steroids by Rhizopus arrhizus ATCC11145, and the mechanism of the 6β hydroxylase enzyme. Can J Chem 62:2740–2747

    Article  CAS  Google Scholar 

  • Krishnan R, Madyastha KM, Viswamitra MA (1991) The crystal structure of 14α, 17β-dihydroxyandrost-4-en-3-one monohydrate and 14α, 17β-dihydroxyandrost-1,4-diene-3-one monohydrate. Steroids 56:440–445

    Article  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  Google Scholar 

  • Madyastha KM, Joseph T (1993) Studies on the 14α-hydroxylation of progesterone in Mucor piriformis. J Steroid Biochem Mol Biol 45:563–569

    Article  CAS  Google Scholar 

  • Madyastha KM, Srivatsan J (1987) Novel transformation of progesterone by a Mucor sp. Can J Microbiol 33:361–365

    Article  CAS  Google Scholar 

  • Madyastha KM, Jayanthi CR, Madyastha P, Sumathi D (1984) Studies on the microsomal 11α-hydroxylation of progesterone in A. ochraceus: isolation, characterization and solubilization of the hydroxylase system. Can J Biochem Cell Biol 62:100–107

    Article  CAS  Google Scholar 

  • Mahato SB, Banarjee S (1986) Metabolism of 17α-hydroxyprogesterone by a Bacillus species. Biochem J 239:473–476

    Article  CAS  Google Scholar 

  • Murray HC, Peterson DH (1957) 8-Hydroxy-11-deoxycorticosterones. U.S. patent no. 2,800,490

  • Prema BR, Bhattacharyya PK (1962) Microbiological transformation of terpenes II. Transformation of α-pinene. Appl Microbiol 10:524–528

    CAS  PubMed  PubMed Central  Google Scholar 

  • Siekmann L, Disse B, Breuer H (1980) Biosynthesis and metabolism of 16α, 17α-epoxy-C21-steroids in rat liver microsomes. J Steroid Biochem 13:1181–1205

    Article  CAS  Google Scholar 

  • Singh K, Sehgal SN, Vezina C (1967) Transformation of steroids by Mucor griseocyanus. Can J Microbiol 13:1271–1281

    Article  CAS  Google Scholar 

  • Vezina C, Singh K (1975) Transformation of organic compounds by fungal spores. In: Smith JE, Berry DR (eds) Filamentous fungi, vol I. Edward Arnold, London, pp 158–192

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Madyastha, K.M., Joseph, T. Transformation of 16-dehydroprogesterone and 17α-hydroxyprogesterone by Mucor piriformis . Appl Microbiol Biotechnol 41, 170–177 (1994). https://doi.org/10.1007/BF00186955

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00186955

Keywords

Navigation