Skip to main content
Log in

Analyses of ribosomal RNA sequences from glaucocystophyte cyanelles provide new insights into the evolutionary relationships of plastids

  • Articles
  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Glaucocystophyte algae (sensu Kies, Berl. Deutsch. Bot. Ges. 92, 1979) contain plastids (cyanelles) that retain the peptidoglycan wall of the putative cyanobacterial endosymbiont; this and other ultrastructural characters (e.g., unstacked thylakoids, phycobilisomes) have suggested that cyanelles are “primitive” plastids that may represent undeveloped associations between heterotrophic “host” cells (i.e., glaucocystophytes) and cyanobacteria. To test the monophyly of glaucocystophyte cyanelles and to determine their evolutionary relationship to other plastids, complete 16S ribosomal RNA sequences were determined for Cyanophora paradoxa, Glaucocystis nostochinearum, Glaucosphaera vacuolata, and Gloeochaete wittrockiana. Plastid rRNAs were analyzed with the maximum-likelihood, maximumparsimony, and neighbor joining methods. The phylogenetic analyses show that the cyanelles of C. paradoxa, G. nostochinearum, and G. wittrockiana form a distinct evolutionary lineage; these cyanelles presumably share a monophyletic origin. The rDNA sequence of G. vacuolata was positioned within the nongreen plastid lineage. This result is consistent with analyses of nuclear-encoded rRNAs that identify G. vacuolata as a rhodophyte and support its removal from the Glaucocystophyta. Results of a global search with the maximumlikelihood method suggest that cyanelles are the first divergence among all plastids; this result is consistent with a single loss of the peptidoglycan wall in plastids after the divergence of the cyanelles. User-defined tree analyses with the maximum-likelihood method indicate, however, that the position of the cyanelles is not stable within the rRNA phylogenies. Both maximumparsimony and neighbor-joining analyses showed a close evolutionary relationship between cyanelles and nongreen plastids; these phylogenetic methods were sensitive to inclusion/exclusion of the G. wittrockiana cyanelle sequence. Base compositional bias within the G. wittrockiana 16S rRNA may explain this result. Taken together the phylogenetic analyses are interpreted as supporting a near-simultaneous radiation of cyanelles and green and nongreen plastids; these organelles are all rooted within the cyanobacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bhattacharya D, Helmchen T, Melkonian M (1995a) Molecular evolutionary analyses of nuclear-encoded small subunit ribosomal RNA identify an independent rhizopod lineage containing the Euglyphidae and the Chlorarachniophyta. J Euk Microbiol

  • Bhattacharya D, Helmchen T, Bibeau C, Metkonian M (1995b) Comparisons of nuclear-encoded small- subunit ribosomal RNAs reveal the evolutionary position of the Glaucocystophyta. Mol. Biol. Evol.

  • Bohnert HJ, Crouse EJ, Pouyet J, Mucke H, Löffelhardt W (1982) The subcellular localization of DNA components from Cyanophora paradoxa, a flagellate containing endosymbiotic cyanelles. Eur J Biochem 126:381–388

    Google Scholar 

  • Bourrelly P (1970) Les algues d'eau douce. Tome III: Les algues bleues et rouges. Les eugleniens, peridiniens et cryptomonadiniens. N. Boubée and Cie, Paris

    Google Scholar 

  • Cavalier-Smith T (1987) Glaucophyceae and the origin of plants. Evol Trends Plants 2:75–78

    Google Scholar 

  • Cavalier-Smith T (1993) Kingdom protozoa and its 18 phyla. Microbiol Rev 57:953–994

    CAS  PubMed  Google Scholar 

  • Douglas SE, Turner S (1991) Molecular evidence for the origin of plastids from a cyanobacterium-like ancestor. J Mol Evol 33:267–273

    Google Scholar 

  • Douglas SE, Murphy CA (1994) Structural, transcriptional and phylogenetic analyses of the atpB gene cluster from the plastid of Cryptomonas ϕ (Cryptophyceae). J Phycol 30:329–340

    Google Scholar 

  • Douglas SE, Durnford DG, Morden CW (1990) Nucleotide sequence of the gene for the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase from Cryptomonas ϕ: evidence supporting the polyphyletic origin of plastids. J Phycol 26:500–508

    Google Scholar 

  • Douglas SE, Murphy CA, Spencer DF, Gray MW (1991) Cryptomonad algae are evolutionary chimeras of two phylogenetically distinct unicellular eukaryotes. Nature 350:148–151

    Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Google Scholar 

  • Felsenstein J (1993) PHYLIP manual, version 3.5c. Department of Genetics, University of Washington, Seattle

    Google Scholar 

  • Geitler L (1923) Der Zellbau von Glaucocystis nostochinearum und Gloeochaete wittrockiana and die Chromatophoren-Symbiosetheorie von Mereschkowski. Arch Protistenk 47:1–24

    Google Scholar 

  • Gibbs SP (1981) The chloroplasts of some algal groups may have evolved from endosymbiotic eukaryotic algae. Ann NY Acad Sci 361:193–207

    Google Scholar 

  • Gibbs S (1993) The evolution of algal chloroplasts. In: Lewin RA (ed) Origins of plastids. Chapman and Hall, New York, p 107

    Google Scholar 

  • Gillott M (1990) Phylum Cryptophyta (Cryptomonads). In: Margulis L, Corliss JO, Melkonian M, Chapman DJ (eds) Handbook of protoctista. Jones and Bartlett, Boston, p 139

    Google Scholar 

  • Giovannoni S, Turner S Olsen G, Barns S, Lane D, Pace N (1988) Evolutionary relationships among cyanobacteria and green chloroplasts. J Bacteriol 170:3584–3592

    Google Scholar 

  • Giovannoni SJ, Wood N, Huss V (1993) Molecular phylogeny of oxygenic cells and organelles based on small-subunit ribosomal RNA sequences. In: Lewin RA (ed) Origins of plastids. Chapman and Hall, New York, p 159

    Google Scholar 

  • Gray MW (1989) The evolutionary origins of organelles. Trends Genet 5:294–299

    Google Scholar 

  • Greenwood AD, Griffiths HB, Santore UJ (1977) Chloroplasts and cell compartments in Cryptophyceae. Br Phycol J 12:119

    Google Scholar 

  • Hall WT, Claus G (1963) Ultrastructural studies on the blue-green algal symbiont in Cyanophora paradoxa Korschikoff. J Cell Biol 19: 551–563

    Google Scholar 

  • Hall WT, Claus G (1967) Ultrastructural studies on the cyanelles of Glaucocystis nostochinearum Itzigsohn. J Phycol 2:37–51

    Google Scholar 

  • Herdman M, Stanier R (1977) The cyanelle: chloroplast or endosymbiotic procaryote? FEMS Microbiol Lett 1:7–12

    Google Scholar 

  • Hultman T, Bergh S, Moks T, Uhlen M (1991) Bidirectional solidphase sequencing of in vitro amplified plasmid DNA. Biotechniques 10:83–84

    Google Scholar 

  • Huson DH, Wetzel R (1994) SplitsTree, V1.0. FSP Math, Universität Bielefeld, Germany

    Google Scholar 

  • Huss VAR, Giovannoni SJ (1992) Primary structures of the chloroplast small subunit ribosomal RNA gene from Chlorella vulgaris. Nucleic Acids Res 17:9487

    Google Scholar 

  • Jukes TH, Cantor CR (1969) Evolution of protein molecules. In: Munro HN(ed) Mammalian protein molecules. Academic Press, New York, p 21

    Google Scholar 

  • Kies L (1974) Elektronenmikroskopische Untersuchungen an Paulinella chromatophora Lauterborn, einer Thekamöbe mit blaugrtinen Endosymbionten (Cyanellen). Protoplasma 80:69–89

    Google Scholar 

  • Kies L (1979) Zur systematischen Einordnung von Cyanophora paradoxa, Gloeochaete wittrockiana and Glaucocystis nostochinearum. Berl Deutsch Bot Ges 92:445–454

    Google Scholar 

  • Kies L (1992) Glaucocystophyceae and other protists harbouring procaryotic endocytobionts. In: Reisser W (ed) Algae and symbioses: plants, animals, fungi, viruses, interactions explored. Biopress Limited, Bristol, p 354

    Google Scholar 

  • Kies L, Kremer BP (1986) Typification of the Glaucocystophyta. Taxon 35:128–133

    Google Scholar 

  • Kies L, Kremer BP (1990) Phylum Glaucocystopyta. In Margulis L, Corliss JO, Melkonian M, Chapman DJ (eds) Handbook of protoctista. Jones and Bartlett, Boston, p 152

    Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitution through comparative studies of sequence evolution. J Mol Evol 16:111–120

    Google Scholar 

  • Kishino H, Hasegawa M (1989) Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order of the Hominoidea. J Mol Evol 29: 170–179

    CAS  PubMed  Google Scholar 

  • Korshikov AA (1930) Glaucosphaera vacuolata, a new member of the Glaucophyceae. Arch Protistenk 70:217–222

    Google Scholar 

  • Leipe DD, Wainright PO, Gunderson JH, Porter D, Patterson DJ, Valois F, Himmerich S, Sogin ML (1994) The stramenopiles from a molecular perspective: 16S-like rRNA sequences from Labyrinthuloides minuta and Cafeteria roenbergensis. Phycologia 33:369–377

    Google Scholar 

  • Lockhart PJ, Howe CJ, Bryant DA, Beanland TJ, Larkum AWD (1992) Substitutional bias confounds inference of cyanelle origins from sequence data. J Mol Evol 34:153–162

    Google Scholar 

  • Lockhart PJ, Steel MA, Hendy MD, Penny D (1994) Recovering evolutionary trees under a more realistic model of sequence evolution. Mol Biol Evol 11:605–612

    Google Scholar 

  • Margulis L (1981) Symbiosis in cell evolution. Freeman, Chicago

    Google Scholar 

  • Martin W, Somerville CC, Loiseaux-de Goer S (1992) Molecular phylogenies of plastid origins and algal evolution. J Mol Evol 35:385–404

    Google Scholar 

  • McCracken DA, Nadavukaren MJ, Cain JR (1980) A biochemical and ultrastructural evaluation of the taxonomic position of Glaucosphaera vacuolata Korsh. New Phytol 86:39–44

    Google Scholar 

  • McFadden GI, Melkonian M (1986) Use of Hepes buffer for microalgal culture media and fixation for electron microscopy. Phycologia 25:551–557

    Google Scholar 

  • McFadden GI, Gilson PR, Hill DRA (1994) Goniomonas: rRNA sequences indicate that this phagotrophic flagellate is a close relative of the host component of cryptomonads. Ent J Phycol 29:29–31

    Google Scholar 

  • Mereschkowsky C (1905) Über Natur and Ursprung der Chromatophoren im Pflanzenreiche. Biol Zentralbl 25:593–604

    Google Scholar 

  • Mereschkowsky C (1910) Theorien der zwei Plasmaarten als Grundlage der Symbiogenesis, einer neuen Lehre der Entstehung der Organismen. Biol Zentralbl 30:278–303

    Google Scholar 

  • Morden CW, Golden SS (1991) Sequence analysis and phylogenetic reconstruction of the genes encoding the large and small subunits of ribulose-1,5-bisphosphate carboxylase/oxygenase from the chlorophyll b-containing prokaryote Prochlorothrix hollandica. J Mol Evol 32:379–395

    Google Scholar 

  • Morden CW, Delwiche CF, Kuhsel M, Palmer JD (1992) Gene phylogenies and the endosymbiotic origin of plastids. Biosystems 28: 75–90

    Google Scholar 

  • Olsen GJ, Matsuda H, Hagstrom R, Overbeek R (1994) Fast DNA ml: a tool for construction of phylogenetic trees of DNA sequences using maximum likelihood. CABIOS 10:41–48

    Google Scholar 

  • Palmer JD (1993) A genetic rainbow of plastids. Nature 364:762–763

    Google Scholar 

  • Palenik R, Haselkorn R (1992) Multiple evolutionary origins of prochlorophytes, the chlorophyll b-containing prokaryotes. Nature 355:265–267

    Google Scholar 

  • Pascher A (1929) Uber die Natur der blaugrünen Chromatophoren des Rhizopoden Paulinella chromatophora. Zool Anz 81:189–194

    Google Scholar 

  • Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Erlich HA (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239:487–491

    CAS  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chainterminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467

    CAS  PubMed  Google Scholar 

  • Schlösser UG (1982) Sammlung von Algenkulturen. Berl Deutsch Bot Ges 95:181–276

    Google Scholar 

  • Schlösser UG (1984) Sammlung von Algenkulturen: Additions to the collection since 1982. Berl Deutsch Bot Ges 97:465–475

    Google Scholar 

  • Schnepf E (1966) Zur Cytologie and taxonomischen Einordnung von Glaucocystis. Arch Mikrobiol 55:149–174

    Google Scholar 

  • Skuja H (1954) Glaucophyta. In: Melcher H, Werdermann E (eds) Syllabus der Pflanzenfamilien. Borntraeger, Berlin, p 56

    Google Scholar 

  • Sogin ML, Elwood HJ, Gunderson JH (1986) Evolutionary diversity of eukaryotic small-subunit rRNA genes. Proc Natl Acad Sci USA 83:1383–1387

    Google Scholar 

  • Swofford DL (1993) PAUP: phylogenetic analysis using parsimony, V3.1.1. Illinois Natural History Survey, Champaign

    Google Scholar 

  • Valentin K, Zetsche K (1990) Nucleotide sequence of the gene for the large subunit of Rubisco from Cyanophora paradoxa: phylogenetic implications. Curr Genet 18:199–202

    Google Scholar 

  • Whatley JM (1993) Membranes and plastid origins. In: Lewin RA (ed) Origins of plastids. Chapman & Hall, New York, p 77

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Correspondence to: D. Bhattacharya

Rights and permissions

Reprints and permissions

About this article

Cite this article

Helmchen, T.A., Bhattacharya, D. & Melkonian, M. Analyses of ribosomal RNA sequences from glaucocystophyte cyanelles provide new insights into the evolutionary relationships of plastids. J Mol Evol 41, 203–210 (1995). https://doi.org/10.1007/BF00170674

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00170674

Key words

Navigation