Skip to main content
Log in

Pattern formation in generalized Turing systems

I. Steady-state patterns in systems with mixed boundary conditions

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

Turing's model of pattern formation has been extensively studied analytically and numerically, and there is recent experimental evidence that it may apply in certain chemical systems. The model is based on the assumption that all reacting species obey the same type of boundary condition pointwise on the boundary. We call these scalar boundary conditions. Here we study mixed or nonscalar boundary conditions, under which different species satisfy different boundary conditions at any point on the boundary, and show that qualitatively new phenomena arise in this case. For example, we show that there may be multiple solutions at arbitrarily small lengths under mixed boundary conditions, whereas the solution is unique under homogeneous scalar boundary conditions. Moreover, even when the same solution exists under scalar and mixed boundary conditions, its stability may be different in the two cases. We also show that mixed boundary conditions can reduce the sensitivity of patterns to domain changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ashkenazi, M., Othmer, H. G.: Spatial patterns in coupled biochemical oscillators. J. Math. Biol. 5, 305–350 (1978)

    Google Scholar 

  2. Babloyantz, A., Bellemans, A.: Pattern regulation in reaction-diffusion systems — the problem of size invariance. Bull. Math. Biol. 47, 475–487 (1985)

    Google Scholar 

  3. Benson, D. L., Sherratt, J. A., Maini, P. K.: Diffusion driven instability in an inhomogeneous domain. Bull. Math. Biol. 55, 365–384 (1993)

    Google Scholar 

  4. Benson, D. L., Maim, P. K., Sherratt, J. A.: Pattern formation in heterogeneous domains. In: Othmer, H. G., Maini, P. K., Murray, J. D. (eds.) Experimental and Theoretical Advances in Biological Pattern Formation. London: Plenum 1993

    Google Scholar 

  5. Brümmer, F., Zempel, G., Buhle, P., Stein, J-C., Hulser, D. F.: Retinoic acid modulates gap junction permeability: a comparative study of dye spreading and ionic coupling in cultured cells. Exp. Cell Res. 196, 158–163 (1991)

    Google Scholar 

  6. Castets, V., Dulos, E., De Kepper, P.: Experimental evidence of a sustained standing Turing-type nonequilibrium chemical pattern. Phys. Rev. Lett. 64(24), 2953–2956 (1990)

    Google Scholar 

  7. Child, C. M.: Patterns and Problems of Development. University of Chicago Press, 1941

  8. Conway, E., Hoff D., Smoller, J.: Large time behavior of solutions of nonlinear reaction diffusion equations. SIAM J. Appl. Math. 35(1), 1–16 (July 1978)

    Google Scholar 

  9. Crick, F. H.: Diffusion in embryogenesis. Nature 225, 420–422 (1970)

    Google Scholar 

  10. 10.Dillon, R., Othmer, H. G.: Control of gap junction permeability can control pattern formation in limb development. In: Othmer, H. G., Maini, P. K., Murray, J. D. (eds.) Experimental and Theoretical Advances in Biological Pattern Formation. London: Plenum 1993

    Google Scholar 

  11. Doedel, E.: AUTO: Software for continuation and bifurcation problems in ordinary differential equations. Technical report, California Institute of Technology, 1986

  12. Driesch, H.: Entwicklungsmechanische Studien. Z. Wiss. Zool. 53, 160–184 (1892)

    Google Scholar 

  13. Driesch, H.: Entwicklungsmechanische Studien. Z. Wiss. Zool. 55, 3–61 (1893)

    Google Scholar 

  14. Epstein, I. R., Lengyel, I., Kádár, S., Kagan, M., Yokoyama, M.: New systems for pattern formation studies. Physica A, 188, 26–33 (1992)

    Google Scholar 

  15. French, V., Bryant, P. J., Bryant, S. V.: Pattern regulation in epimorphic fields. Science 193, 969–981 (1977)

    Google Scholar 

  16. Goodwin, B. C., Kaufflnan, S. A.: Spatial harmonics and pattern specification in early Drosophila development. Part I. Bifurcation sequences and gene expression. J. Theor. Biol. 144, 303–319 (1990)

    Google Scholar 

  17. Hunding, A., Sorensen, P. G.: Size adaptation of Turing prepatterns. J. Math. Biol. 26, 27–39 (1988)

    Google Scholar 

  18. Lacalli, T. C., Harrison, L. G.: The regulatory capacity of Turing's model for morphogenesis with application to slime moulds. J. Theor. Biol. 70, 273–295 (1978)

    Google Scholar 

  19. Lengyel, I., Epstein, I.R.: A chemical approach to designing Turing patterns in reaction-diffusion systems. Proc. Natl. Acad. Sci. 89, 3977–3979 (1992).

    Google Scholar 

  20. Meinhardt, H.: Modes of Biological Pattern Formation. London: Academic Press 1982

    Google Scholar 

  21. Moler, C. B., Stewart, G. W.: An algorithm for generalized matrix eigenproblems. SIAM J. Numer. Anal. 10, 241–256 (1973)

    Google Scholar 

  22. Murray, J. D.: Mathematical Biology. Berlin Heidelberg New York: Springer 1989

    Google Scholar 

  23. Othmer, H. G.: Interactions of Reaction and Diffusion in Open Systems. PhD thesis, Minneapolis: University of Minnesota 1969

    Google Scholar 

  24. Othmer, H. G.: Current problems in pattern formation. In: Levin, S. A. (ed.) (Some mathematical questions in biology VIII. Lect. Math. Life Sci., vol. 9, pp. 57–85) Providence, RI: Am. Math. Soc. 1977

    Google Scholar 

  25. Othmer, H. G.: Applications of bifurcation theory in the analysis of spatial and temporal pattern formation. In: Gurel, O., Rössler, O. K. (eds.) Bifurcation theory and applications in scientific disciplines, pp. 64–77. New York: New York Academy of Sciences 1979

    Google Scholar 

  26. Othmer, H. G.: Synchronized and differentiated modes of cellular dynamics. In: Haken, H. (eds.) Dynamics of Synergetic Systems. Berlin Heidelberg New York: Springer 1980

    Google Scholar 

  27. Othmer, H. G.: The interaction of structure and dynamics in chemical reaction networks. In: Ebert, K. H., Deuflhard, P., Jager, W. (eds.) Modelling of Chemical Reaction Systems, pp. 1–19 Berlin Heidelberg New York: Springer 1981

    Google Scholar 

  28. Othmer, H. G., Aldridge, J.: The effects of cell density and metabolite flux on cellular dynamics. J. Math. Biol. 5, 169–200 (1978)

    Google Scholar 

  29. Othmer, H. G., Pate, E. F.: Scale invariance in reaction-diffusion models of spatial pattern formation. Proc. Nat. Acad. Sci. 77, 4180–4184 (1980)

    Google Scholar 

  30. Othmer, H. G., Scriven, L. E.: Interactions of reaction and diffusion in open systems. Ind. Eng. Chem. Fund 8, 302–315 (1969)

    Google Scholar 

  31. Ouyang, Q., Swinney, H. L.: Transition from a uniform state to hexagonal and striped patterns. Nature 352, 610–612 (1991)

    Google Scholar 

  32. Pate, E., Othmer, H. G.: Applications of a model for scale-invariant pattern formation in developing systems. Differentiation 28, 1–8 (1984)

    Google Scholar 

  33. Pearson, J. E., Horsthemke, W.: Turing instabilities with nearly equal diffusion coefficients. J. Chem. Phys. 90(3), 1588–1599 (1989)

    Google Scholar 

  34. Turing, A. M.: The chemical basis of morphogenesis. Philos., Trans. R. Soc. Lond Ser. B 237, 37–72 (1952)

    Google Scholar 

  35. Ward, R. C.: The combination shift QZ algorithm. SIAM J. Numer. Anal. 12, 835–853 (1975)

    Google Scholar 

  36. Wolpert, L.: Positional information and the spatial pattern of cellular differentiation. J. Theor. Biol. 25, 1–47 (1969)

    Google Scholar 

  37. Wolpert, L.: Positional information and pattern formation. Curr. Top. Dev. Biol. 6, 183–224 (1971)

    Google Scholar 

  38. Wright, D. A., Lawrence, P. A.: Regeneration of the segment boundary in Oncopeltus. Dev. Biol. 85, 317–327 (1981)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported in part by NIH Grant # GM29123

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dillon, R., Maini, P.K. & Othmer, H.G. Pattern formation in generalized Turing systems. J. Math. Biol. 32, 345–393 (1994). https://doi.org/10.1007/BF00160165

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00160165

Key words

Navigation