Skip to main content
Log in

Phytoremediation of soil contaminated with low concentrations of radionuclides

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

Ecosystems throughout the world have been contaminated with radionuclides by above-ground nuclear testing, nuclear reactor accidents and nuclear power generation. Radioisotopes characteristic of nuclear fission, such as 137Cs and 90Sr, that are released into the environment can become more concentrated as they move up the food chain often becoming human health hazards. Natural environmental processes will redistribute long lived radionuclides that are released into the environment among soil, plants and wildlife. Numerous studies have shown that 137 Cs and 90Sr are not removed from the top 0.4 meters of soil even under high rainfall, and migration rate from the top few centimeters of soil is slow. The top 0.4 meters of the soil is where plant roots actively accumulate elements. Since plants are known to take up and accumulate 137 Cs and 90Sr removal of these radionuclides from contaminated soils by plants could provide a reliable and economical method of remediation. One approach is to use fast growing plants inoculated with mycorrhizal fungi combined with soil organic amendments to maximize the plant accumulation and removal of radionuclides from contaminated soils, followed by harvest of above-ground portion of the plants. High temperature combustion would be used to oxidize plant material concentrating 137 Cs and 90Sr, in ash for disposal. When areas of land have been contaminated with radionuclides are large, using energy intensive engineering solutions to remediate huge volumes of soil is not feasible or economical. Plants are proposed as a viable and cost effective method to remove radionuclides from the soils that have been contaminated by nuclear testing and nuclear reactor accidents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barber, S. A.: 1984, Soil Bionutrient Availability, John Wiley and Sons, New York, 398 pp.

  • Brand, F: 1992, ‘Mixed Associations of Fungi in Ectomycorrhizal Roots’, in Read, D. J., Lewis, D. H., Fitter, A. H. and Alexander, I. J. (eds.), Mycorrhizas in Ecosystems. CAB International Press, 419, pp. 142-150.

  • Breshears, D. D., Kirchner, T. B. and Whicker, F. W.: 1992, Ecol. Appl. 2, 285.

    Google Scholar 

  • Clark, M. J. and Smith, F. B.: 1988, Nature 332, 245.

    Google Scholar 

  • Church, B. W., Wheeler, D. L., Campbell, C. M., Nutley, R.V. and Ansphaugh, L. R.: 1990, Health Physics 59, 503.

    Google Scholar 

  • Clint, G. M. and Dighton, J.: 1992, New Phytol 121, 555.

    Google Scholar 

  • Coughtry, P. J., Kirton, J. A. and Mitchell, N. G.: 1989, Enviorn. Pollut. 62, 281.

    Google Scholar 

  • Dahlman, R. C., Auerbach, S. I. and Dunaway, P. B.: 1969, Environmental Contamination by Radioactive Materials, International Atomic Energy Agency and World Health Organization, Vienna Austria.

    Google Scholar 

  • Eisenbud, M.: 1987, Experimental Radioactivity, Academic Press New York, New York.

    Google Scholar 

  • Entry, J. A., Rygiewicz, P. T. and Emmingham, W. H.: 1993, J. Environ. Qual. 22, 742.

    Google Scholar 

  • Entry, J. A., Rygiewicz, P. T. and Emmingham, W. H.: 1994, Environ. Pollut. 86, 201.

    Google Scholar 

  • Entry, J. A. and Emmingham, W. H.: 1995, Can. J. For. Res. (in press).

  • Essington, E. H. and Nishita, H.: 1966, Plant & Soil 24, 1.

    Google Scholar 

  • Essington, E. H. Nishita, H. and Wallace, A.: 1962. Soil Sci. 94, 96.

    Google Scholar 

  • Fried, A.S. and Grakovskiy, V.S.: 1988, Pochvovedeniye 2, 78.

    Google Scholar 

  • Gonzalez, A. and Anderer, J.: 1989, IAEA Bulletin 2, 21.

    Google Scholar 

  • Harley, J. C.: 1989. Mycol. Res. 92, 129.

    Google Scholar 

  • Harley, J. C. and Smith, S. E.: 1983, Mycological Symbiosis, Academic Press, London, 483 pp.

    Google Scholar 

  • Howard, B. J., Beresford, N. A. and Hove, K.: 1991, Health Physics 61, 715.

    Google Scholar 

  • Kirk, G. J. D. and Staunton, S.: 1989, J. Soil Sci. 40, 71.

    Google Scholar 

  • Mahara, Y.: 1993, ‘Storage and migration of fallout of strontium-90 and cesium-137 for over 40 years in the surface soil of Nagasaki’, J. Environ. Qual. 22, 722–730.

    Google Scholar 

  • Molina, R., Massicotte, H.B. and Trappe, J.B.: 1992, ‘Ecological Role and Specificity Phenomena in Ectomycorrhizal Plant Communities: Potentials for Interplant Linkages and Guild development', in Read, D. J., Lewis, D. H., Fitter, A. H. and Alexander, 1. J. (eds.), Mycorrhizas in Ecosystems. CAB International Press, 419, pp. 106-113.

  • Murphy, C. E. and Johnson, T. L.: 1993, J. Envoron. Qual. 22, 793.

    Google Scholar 

  • Nifontova, M. G., Kulikov, G. I., Tarshis, G. I. and D'yachenko: 1989, Ekologiya 3, 40.

    Google Scholar 

  • Nye, P. H. and Tinker, P. B.: 1977, Solute movement in the soil/root system. Blackwell Scientific Publications, Oxford, 192 pp.

    Google Scholar 

  • Paasikallo, A.: 1984, Ann. Agric. Fenn. 23, 109.

    Google Scholar 

  • Pennttila, S. Kairesalo, T. and Uusi-Rauva, A.: 1993, Environ. Pollut. 82, 82.

    Google Scholar 

  • Pinder, J. E. III, McLeod, K. W., Alberts, J. J., Adriano, D. C. and Corey, J. C.: 1984, Health Physics 47, 375.

    Google Scholar 

  • Robison, W. L., Conrado, C. A. and Stuart, M. L.: 1988, URCL-58340, Lawerence Livermore National Laboratory, Livermore, CA.

    Google Scholar 

  • Robison, W. L. and Stone, E. L.: 1992, Health Physics 62, 496.

    Google Scholar 

  • Rogers, R. D. and Williams, S. E.: 1986, Soil Biol. Biochem. 4, 371.

    Google Scholar 

  • Salt, C. A., Mayes, and Elston, D. A.: 1992, J. Appl. Ecol. 29, 378.

    Google Scholar 

  • Sanzharova, D. I. and Aleksakhin, R. M.: 1982, Pochvovedeniye 9, 59.

    Google Scholar 

  • Sanders, F. E. and Tinker, P. B.: 1971, Nature 223, 278.

    Google Scholar 

  • Tensho, K., Yeh, K. L. and Mitsui, S.: 1961, Soil and Plant Food. 6, 4.

    Google Scholar 

  • Vance, N. C.: 1988, Physiology of Drought Stress in Pinus ponderosa (Dougl. ex Laws) and the Influence of Irradiance, Ph.D. Dissertation, Oregon State University, Corvallis OR.

    Google Scholar 

  • Wallace, A. and Romney, E. M.: 1972, Radioecology and Ecophysiology of desert plants at the Nevada Test Site. Environmental Radiation Division, Laboratory of Nuclear Medicine University of California, Riverside, 432 pp.

    Google Scholar 

  • Wallace, G. A. and Wallace, A.: 1983, J. Plant Nutrit. 6, 439.

    Google Scholar 

  • Watson, R., Glick, D., Horsenball, M., McCormick, J., Begley, S., Miller, S., Carroll, G. and KeeneOsborn, S.: 1993, Newsweek, December 27, 1993, pp. 14.

  • Whicker, F. W., Pinder, J. E., Bowling, J. W., Alberts, J. J. and Brisbin, L. Jr.: 1990, Ecol. Monog. 60, 471.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Entry, J.A., Vance, N.C., Hamilton, M.A. et al. Phytoremediation of soil contaminated with low concentrations of radionuclides. Water Air Soil Pollut 88, 167–176 (1996). https://doi.org/10.1007/BF00157420

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00157420

Keywords

Navigation