Skip to main content
Log in

Arctic aerosol and Arctic climate: Results from an energy budget model

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

An energy budget model is used to study the effect on Arctic climate of optically active aerosol in the Arctic atmosphere. The dependence of the change in surface temperature on the vertical distribution of the aerosol and on the radiative properties of the aerosol-free atmosphere, the Arctic surface, and the aerosol, itself, are calculated. An extensive sensitivity analysis is performed to assess the degree to which the results of the model are dependent upon the assumptions underlying it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

I 0 :

Solar flux at the top of the Arctic Atmosphere (‘Arctic’ here means 70° N latitude to the pole)

a S :

Surface albedo of the Arctic (a c S is the value of surface albedo at which the sign of the surface temperature perturbation changes)

ϱ :

Reflection coefficient of the aerosol-free Arctic atmosphere

α :

Absorption coefficient of the aerosol-free Arctic atmosphere

τ :

Transmission coefficient of the aerosol-free Arctic atmosphere

RI 0 :

Total flux of sunlight reflected from the Arctic

A A I 0 :

Total flux of sunlight absorbed in the Arctic atmosphere

A S I 0 :

Total flux of sunlight absorbed at the Arctic surface

A aer I 0 :

Total flux of sunlight absorbed in the Arctic aerosol

Q A :

Net atmospheric flow of energy, per unit of Arctic surface area, north across 70° N latitude

Q S :

Net oceanic flow of energy, per unit of Arctic surface area, north across 70° N latitude

E :

Convective plus latent heat fluxes from surface to atmosphere

F A :

Net flow of energy to the Arctic atmosphere

F S :

Net flow of energy to the Arctic surface

T A :

An effective temperature of the Arctic atmosphere

T S :

Surface temperature of the Arctic

w :

Single-scattering albedo of the aerosol

t :

Optical depth of the aerosol

g :

Fraction of incident radiation scattered forward by the aerosol

ϱ′ :

Reflection coefficient of the aerosol

α′ :

Absorption coefficient of the aerosol

τ′ :

Transmission coefficient of the aerosol

p,q :

Number of atmospheric layers and the inverse of the fraction of incident IR absorbed in each layer in the energy budget model

F,G,H :

Measures of the amount of IR-active atmosphere above the surface, the aerosol, and the clouds

References

  • Ackerman, T. and Valero, F.: 1984, ‘The Vertical Structure of Arctic Haze as Determined from Airborne Net-Flux Radiometer Measurements’, Geophys. Res. Lett. 11, 469–472.

    Google Scholar 

  • Ackerman, T., Stenback, J., and Valero, F: 1985, The Importance of Arctic Haze for the Energy Budget of the Arctic, in Stonehouse, B. (ed.), Symposium Volume: Arctic Air Pollution, Cambridge University Press.

  • Barrie, L., Hoff, R., and Daggupaty, S.: 1981, ‘The Influence of Mid-latitudinal Pollution Sources on the Haze in the Canadian Arctic’, Atmos. Environ. 15, 1407–1419.

    Google Scholar 

  • Barrie, L. and Hoff, R.: 1985, ‘Five Years of Air Chemistry Observations in the Canadian Arctic’, Atmos. Environ. 19 (12), 1995–2010.

    Google Scholar 

  • Blanchet, J-P. and List, R.: 1983, ‘Estimation of Optical Properties of Arctic Haze Using a Numerical Model’, Atmosphere-Ocean 21 (4), 444–465.

    Google Scholar 

  • Bodhaine, B., Harris, J., and Herbert, G.: 1981, ‘Aerosol Light Scattering and Condensation Nuclei Measurements at Barrow, Alaska’, Atmos. Environ. 15, 1375–1390.

    Google Scholar 

  • Budyko, M.: 1977, Climatic Changes, Am. Geophys. Union, Washington, D.C.

    Google Scholar 

  • Cess, R.: 1983, ‘Arctic Aerosols: Model Estimates of Interactive Influences upon the Surfaceatmosphere Clear-sky Radiation Budget’, Atmos. Environ. 17, 2555–2564.

    Google Scholar 

  • Chylek, P. and Coakley, J.: 1975, ‘Man-Made Aerosols and the Heating of the Atmosphere over Polar Regions’, in G. Weller and S. A. Bowling (eds.), Climate of the Arctic, Geophys. Inst, U. of Alaska, Fairbanks, pp. 159–165.

    Google Scholar 

  • Clarke, A. and Noone, K.: 1985, ‘Soot in the Arctic Snowpack: a Cause for Perturbations in Radiative Transfer’, Atmos. Environ. 19 (12), 2045–2054.

    Google Scholar 

  • Dutton, E.G., DeLuisi, J. J., and Bodhaine, B.D.: 1984, ‘Features of Aerosol Optical Depth Observed at Barrow’, March 10–20, 1983, Geophys. Res. Lett. 11 (5), 385–388.

    Google Scholar 

  • Goody, R. M. and Walker, J. C. G.: 1972, Atmospheres, Prentice Hall, Englewood Cliffs, NJ, U.S.A.

    Google Scholar 

  • Grant, I. and Hunt, G.: 1969, ‘Discrete Space Theory of Radiative Transfer: I. Fundamentals’, Proc. Roy. Soc. London A313, 183–205.

    Google Scholar 

  • Hansen, A. and Rosen, H.: 1984, ‘Vertical Distributions of Particulate Carbon, Sulfur, and Bromine in the Alaskan Haze and Comparison with Groundlevel Measurements at Barrow, Alaska’, Geophys. Res. Lett. 11, 381–384.

    Google Scholar 

  • Heintzenberg, J.: 1982, ‘Size-Segregated Measurements of Particle Elemental Carbon and Light Absorption at Remote Arctic Locations’, Atmos. Environ. 16, 2461–2469.

    Google Scholar 

  • Holmgren, B., Shaw, G., and Weller, G.: 1974, ‘Turbidity in the Arctic Atmosphere’, AIDJEX Bulletin 27, 135–148.

    Google Scholar 

  • Kellogg, W.: 1975, ‘Climate Feedback Mechanisms Involving the Polar Regions’, in G. Weller and S. A. Bowling (eds.), Climate of the Arctic, Geophys. Inst., U. of Alaska, Fairbanks, pp. 111–116.

    Google Scholar 

  • MacCracken, M. C., Cess, R. D., and Potter, G. L.: 1986, ‘Climatic Effects of Anthropogenic Arctic Aerosols: An Illustration of Climate Feedback Mechanisms with One and Two-Dimensional Climate Models’, J. Geophys. Res. 91 (D13), 14,445–14,450.

    Google Scholar 

  • Mitchell, J.: 1957, ‘Visual Range in the Polar Regions with Particular Reference to the Alaskan Arctic’, J Atmos. Terr. Phys. Spec. Supp., 195–211.

  • Mitchell, J.: 1971, ‘The Effect of Atmospheric Aerosols on Climate with Special Reference to Temperature near the Earth's Surface’, J. Appl. Meteorol. 10 (4), 703–714.

    Google Scholar 

  • Oort, A. H.: 1983, Global Atmospheric Circulation Statistics, 1953–1973, National Oceanic and Atmospheric Administration Professional Paper 14, U.S. Govt. Printing Office, Washington, DC, U.S.A.

    Google Scholar 

  • Porch, W. and MacCracken, M. C.: 1982, Parametric Study of the Effects of Arctic Soot on Solar Radiation, Atmos. Environ. 16, 1366–1371.

    Google Scholar 

  • Raatz, W., Schnell, R., Bodhaine, B., and Oltmans, S.: 1985, ‘Observations of Arctic Haze during Polar Flights from Alaska to Norway’, Atmos. Environ. 19 (2), 2143–2152.

    Google Scholar 

  • Rahn, K. and McCaffrey, R.: 1980, ‘On the Origin and Transport of the Winter Arctic Aerosol’, in: T. Kneip and P. Liov (eds.), Aerosols: Anthropogenic and Natural Sources and Sinks, Ann. N. Y. Acad. Sci. 338, 486–503.

  • Rosen, H., Novakov, T., and Bodhaine, B.: 1981, ‘Soot in the Arctic’, Atmos. Environ. 15, 1371–1374.

    Google Scholar 

  • Rosen, H. and Novakov, T.: 1983, 'Combustion-Generated Carbon Particles in the Arctic Atmosphere, Nature 306, 768–770.

    Google Scholar 

  • Rosen, H. and Hansen, A.: 1984, ‘Role of Combustion-Generated Carbon Particles in the Absorption of Solar Radiation in the Arctic Haze’, Geophys. Res. Lett. 11, 461–464.

    Google Scholar 

  • Schneider, S.: 1975, ‘Surface Temperature-Albedo Coupling: Implications for Climate Stability’, in G. Weller and S. A. Bowling (eds.), Climate of the Arctic, Geophys. Inst., U. of Alaska, Fairbanks, pp. 166–171.

    Google Scholar 

  • Shaw, G.: 1975, ‘The Vertical Distribution of Atmospheric Aerosols at Barrow’, Alaska, Tellus 27, 39–50.

    Google Scholar 

  • Shaw, G. and Stamnes, K.: 1980, ‘Arctic Haze: Perturbation of the Polar Radiation Budget’, in T. Kneip and P. Liov (eds.), Aerosols: Anthropogenic and Natural Sources and Sinks, Ann. N.Y. Acad. Sci. 338, 533–539.

  • Shaw, G.: 1984, ‘Atmospheric Turbidity in the Polar Regions’, J. Appl. Meteorol. 21, 1080–1088.

    Google Scholar 

  • Shaw, G.: 1985, ‘On the Climate Relevancy of Arctic Haze: Static Energy Balance Considerations’, Tellus 37B(1).

  • Stephens, G., Campbell, G., and Von der Haar, T.: 1981, ‘Earth Radiation Budgets’, J. Geophys. Res. 86, 9739–9760.

    Google Scholar 

  • Twomey, S.: 1977, Atmospheric Aerosols, Elsevier Scientific Publ. Co., Amsterdam.

    Google Scholar 

  • Valero, F., Ackerman, T., and Gore, W.: 1983, ‘Radiative Effects of the Arctic Haze’, Geophys. Res. Lett. 10, 1184–1187.

    Google Scholar 

  • Valero, F., Ackerman, T., and Gore, W.: 1984, ‘The Absorption of Solar Radiation by the Arctic Atmosphere during the Haze Season and its Effects on the Radiation Balance’, Geophys. Res. Lett. 11, 465–468.

    Google Scholar 

  • Wendling, P., Wendling, R., Rneger, W., Covert, D., Heintzenberg, J., and Moerl, P.: 1985, ‘Calculated Radiative Effects of Arctic Haze during a Pollution Episode in Spring 1983 Based on Ground-Based and Airborne Measurements’, Atmos. Environ. 19 (2), 2181–2194.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harte, J., Williams, J. Arctic aerosol and Arctic climate: Results from an energy budget model. Climatic Change 13, 161–189 (1988). https://doi.org/10.1007/BF00140568

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00140568

Keywords

Navigation