Skip to main content
Log in

A review of models of landscape change

  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Models of landscape change may serve a variety of purposes, from exploring the interaction of natural processes to evaluating proposed management treatments. These models can be categorized as either whole landscape models, distributional landscape models, or spatial landscape models, depending on the amount of detail included in the models. Distributional models, while widely used, exclude spatial detail important for most landscape ecological research. Spatial models require substantial data, now more readily available, via remote sensing, and more easily manipulated, in geographical information systems. In spite of these technical advances, spatial modelling is poorly developed, largely because landscape change itself is poorly understood.

To facilitate further development of landscape models I suggest (1) empirical multivariate studies of landscape change, (2) modelling of individual landscape processes, (3) explicit study of the effect of model scale on model behavior, and (4) ‘scaling-up’ results of studies, on smaller land areas, that have landscape relevance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Acevedo, M.F. 1981. Electrical network simulation of tropical forests successional dynamics. In: Progress in Ecological Engineering and Management by Mathematical Modelling. pp. 883–892. Edited by D.M. Dubois. Editions cebedoc, Liège.

    Google Scholar 

  • Alemdag, I.S. 1978. Evaluation of some competition indexes for the prediction of diameter increment in planted white spruce. Can. For. Serv., For. Manage. Inst. Inform. Rep. FMR-X-108.

  • Alig, R.J. 1985. Modeling acreage changes in forest ownerships and cover types in the southeast. USDA For. Serv. Res. Paper RM-260, Rocky Mt. For. & Range Exp. Sta., Fort Collins, Colo.

    Google Scholar 

  • Alig, R.J. 1986. Econometric analysis of the factors influencing forest acreage trends in the southeast. For. Sci. 32: 119–134.

    Google Scholar 

  • Alig, R.J. and Wyant, J.G. 1985. Projecting regional area changes in forestland cover in the U.S.A. Ecol. Model. 29: 27–34.

    Google Scholar 

  • Anderson, M.C. 1966. Ecological groupings of plants. Nature 212: 54–56.

    Google Scholar 

  • Anderson, T.W. and Goodman, L.A. 1957. Statistical inference about Markov chains. Annals Math. Stat. 28: 89–110.

    Google Scholar 

  • Austin, M.B. 1980. An exploratory analysis of grassland dynamics: An example of a lawn succession. Vegetatio 43: 87–94.

    Google Scholar 

  • Austin, M.B. and Belbin, L. 1981. An analysis of succession along an environmental gradient using data from a lawn. Vegetatio 46: 19–30.

    Google Scholar 

  • Baker, W.L., in press. Landscape ecology and nature reserve design in the Boundary Waters Canoe Area, Minnesota. Ecology, in press.

  • Barringer, T.H. and Robinson, V.B. 1981. Stochastic models of cover class dynamics. In: Proceedings of the 15th International Symposium on Remote Sensing of the Environment. pp. 125–144. Envir. Res. Inst. Mich., Ann Arbor.

    Google Scholar 

  • Bell, E.J. 1974. Markov analysis of land use change. An application of stochastic processes to remotely sensed data. Socio-Econ. Plan. Sci. 8: 311–316.

    Google Scholar 

  • Bell, E.J. and Hinojosa, R.C. 1977. Markov analysis of land use change: Continuous time and stationary processes. Socio-Econ. Plan. Sci. 11: 13–17.

    Google Scholar 

  • Bella, I.E. 1971. A new competition model for individual trees. Forest Sci. 17: 364–372.

    Google Scholar 

  • Bellefleur, P. 1981. Markov models of forest-type secondary succession in coastal British Columbia. Can. J. For. Res. 11: 18–29.

    Google Scholar 

  • Bertuglia, C.S., Leonardi, G., Occelli, S., Rabino, G.A. and Tadei, R. 1987. An historical review of approaches to urban modelling. In: Urban Systems: Contemporary Approaches to Modelling. pp. 8–76. Edited by C.S. Bertuglia, G. Leonardi, S. Occelli, G.A. Rabino, R. Tadei and A.G. Wilson. Croom Helm, London.

    Google Scholar 

  • Bhat, U.N. 1984. Elements of Applied Stochastic Processes. Wiley, New York.

    Google Scholar 

  • Binkley, C.S. 1980. Is succession in hardwood forests a stationary Markov process? For. Sci. 26: 566–570.

    Google Scholar 

  • Botkin, D.B., Janak, J.F. and Wallis, J.R. 1972. Some ecological consequences of a computer model of forest growth. J. Ecol. 60: 849–872.

    Google Scholar 

  • Botkin, D.B., Reynales, T.E. and Woods, K.D. 1985. Adding spatial considerations to the JABOWA model of forest growth. Machine Proc. Rem. Sens. Data Symposium, 1985: 141–146.

    Google Scholar 

  • Bourne, L.S. 1971. Physical adjustment processes and land use succession: A conceptual review and central city example. Econ. Geogr. 47: 1–15.

    Google Scholar 

  • Browder, J.A., Bartley, H.A. and Davis, K.S. 1985. A probabilistic model of the relationship between marshland-water interface and marsh disintegration. Ecol. Model. 29: 245–260.

    Google Scholar 

  • Brown, L.A. 1970. On the use of Markov chains in movement research. Econ. Geogr. 46: 393–403.

    Google Scholar 

  • Burgess, R.L. and Sharpe, D.M., eds. 1981. Forest Island Dynamics in Man-Dominated Landscapes. Springer-Verlag, New York.

    Google Scholar 

  • Burrough, P.A. 1986. Principles of Geographical Information Systems for Land Resources Assessment. Clarendon Press, Oxford.

    Google Scholar 

  • Byrne, S.V., Wehrle, M.M., Keller, M.A. and Reynolds, J.F. 1987. Impact of gypsy moth infestation on forest succession in the North Carolina piedmont: A simulation study. Ecol. Model. 35: 63–84.

    Google Scholar 

  • Cattelino, P.J., Noble, I.R., Slatyer, R.O. and Kessell, S.R. 1979. Predicting the multiple pathways of plant succession. Envir. Manage. 3: 41–50.

    Google Scholar 

  • Collins, L. 1975. An Introduction to Markov Chain Analysis. Concepts and Techniques in Modern Geography. Geo Abstracts, Univ. of East Anglia, Norwich.

    Google Scholar 

  • Collins, L., Drewett, R. and Ferguson, R. 1974. Markov models in geography. The Statistician 23: 179–209.

    Google Scholar 

  • Conlisk, J. 1976. Interactive Markov chains. J. Math. Soc. 4: 157–185.

    Google Scholar 

  • Craig, R.G. and Labovitz, M.L. 1980. Sources of variation in LANDSAT autocorrelation. In: Proceedings of the 14th International Symposium on Remote Sensing of the Environment. pp. 1755–1767. Envir. Res. Inst. Mich., Ann Arbor.

    Google Scholar 

  • Cuff, W.H. and Hardman, J.M. 1980. A development of the Leslie matrix formulation for restructuring and extending an ecosystem model: The infestation of stored wheat by Sitophilus oryzae. Ecol. Model. 9: 281–305.

    Google Scholar 

  • Dale, V.H. and Gardner, R.H. 1987. Assessing regional impacts of growth declines using a forest succession model. J. Envir. Manage. 24: 83–93.

    Google Scholar 

  • DeAngelis, D.L. and Mattice, J.S. 1979. Implications of a partial differential equation cohort model. Math. Biosci. 47: 271–285.

    Google Scholar 

  • DeAngelis, D.L. and Waterhouse, J.C. 1987. Equilibrium and nonequilibrium concepts in ecological models. Ecol. Monogr. 57: 1–21.

    Google Scholar 

  • DeAngelis, D.L., Waterhouse, J.C., Post, W.M. and O'Neill, R.V. 1985. Ecological modelling and disturbance evaluation. Ecol. Model. 29: 399–419.

    Google Scholar 

  • Debussche, M., Godron, M., Lepart, J. and Romane, F. 1977. An account of the use of a transition matrix. Agro-Ecosystems 3: 81–92.

    Google Scholar 

  • Deutsch, S.J. and Ramos, J.A. 1986. Space-time modeling of vector hydrologic sequences. Water Resources Bull. 22: 967–981.

    Google Scholar 

  • Diamond, J. 1986. Overview: Laboratory experiments, field experiments, and natural experiments. In: Community Ecology. pp. 3–22. Edited by J. Diamond and T.J. Case. Harper & Row, New York.

    Google Scholar 

  • Dodson, J.R., Greenwood, P.W. and Jones, R.L. 1986. Holocene forest and wetland vegetation dynamics at Barrington Tops, New South Wales. J. Biogeogr. 13: 561–585.

    Google Scholar 

  • Doubleday, W.G. 1975. Harvesting in matrix population models. Biometrics 31: 189–200.

    Google Scholar 

  • Drewett, J.R. 1969. A stochastic model of the land conversion process. Regional Studies 3: 269–280.

    Google Scholar 

  • Edelstein-Keshet, L. 1988. Mathematical Models in Biology. Random House, New York.

    Google Scholar 

  • Ek, A.R. 1974. Nonlinear models for stand table projection in northern hardwood stands. Can. J. For. Res. 4: 23–27.

    Google Scholar 

  • Emanuel, W.R., Shugart, H.H. and Stevenson, M.P. 1985. Climatic change and the broad-scale distribution of terrestrial ecosystem complexes. Climatic Change 7: 29–43.

    Google Scholar 

  • Eston, V.R., Galves, A., Jacobi, C.M., Langevin, R. and Tanaka, N.I. 1986. Chthamalus bisinuatus (Cirripedia) and Brachidontes solisianus (Bivalvia) spatial interactions: A stochastic model. Ecol. Model. 34: 99–113.

    Google Scholar 

  • Fahrig, L., Lefkovitch, L.P. and Merriam, H.G. 1983. Population stability in a patchy environment. In: Analysis of Ecological Systems: State-of-the-Art in Ecological Modelling. pp. 61–67. Edited by W.K. Lauenroth, G.V. Skogerboe and M. Flug. Elsevier, New York.

    Google Scholar 

  • Fahrig, L. and Merriam, G. 1985. Habitat patch connectivity and population survival. Ecology 66: 1762–1768.

    Google Scholar 

  • Feller, W. 1968. An Introduction to Probability Theory and its Applications. Vol. 1. 3rd Ed. Wiley, New York.

    Google Scholar 

  • Finn, J.T. 1985. Analysis of land use change statistics through the use of Markov chains. In: Proceedings of the 1985 Summer Computer Simulation Conference. pp. 514–519. The Society for Computer Simulation.

  • Forman, R.T.T. and Godron, M. 1986. Landscape Ecology. John Wiley & Sons, New York.

    Google Scholar 

  • Franklin, J.F. and Forman, R.T.T. 1987. Creating landscape patterns by forest cutting: Ecological consequences and principles. Landscape Ecology 1: 5–18.

    Google Scholar 

  • Freedman, H.I. 1980. Deterministic Mathematical Models in Population Biology. Marcel Dekker, New York.

    Google Scholar 

  • Gardner, R.H., Milne, B.T., Turner, M.G. and O'Neill, R.V. 1987. Neutral models for the analysis of broad-scale landscape pattern. Landscape Ecology 1: 19–28.

    Google Scholar 

  • Gibson, C.W.D., Guilford, T.C., Hambler, C. and Sterling, P.H. 1983. Transition matrix models and succession after release from grazing on Aldabra atoll. Vegetatio 52: 151–159.

    Google Scholar 

  • Gilbert, G. 1972. Two Markov models of neighborhood housing turnover. Envir. and Planning A 4: 133–146.

    Google Scholar 

  • Ginsberg, R.B. 1971. Semi-Markov processes and mobility. J. Math. Soc. 1: 233–262.

    Google Scholar 

  • Ginsberg, R.B. 1972a. Critique of probabilistic models: Application of the semi-Markov model to migration. J. Math. Soc. 2: 63–82.

    Google Scholar 

  • Ginsberg, R.B. 1972b. Incorporating causal structure and exogenous information with probabilistic models: With special reference to gravity, migration, and Markov chains. J. Math. Soc. 2: 83–103.

    Google Scholar 

  • Ginsberg, R.B. 1973. Stochastic models of residential and geographic mobility for heterogenous populations. Envir. and Planning A 5: 113–124.

    Google Scholar 

  • Godron, M. and Lepart, J. 1973. Sur la representation de la dynamique de la vegetation au moyen de matrices de succession. In: Sukzessionsforschung. pp. 269–287. Edited by W. Schmidt. J. Cramer, Vaduz.

    Google Scholar 

  • Green, R.H. 1979. Sampling Design and Statistical Methods for Environmental Biologists. Wiley, New York.

    Google Scholar 

  • Gurtin, M.E. and MacCamy, R.C. 1979. Some simple models for nonlinear age-dependent population dynamics. Math. Biosci. 43: 199–211.

    Google Scholar 

  • Gyllenberg, M. 1984. An age-dependent population model with applications to microbial growth processes. In: Modelling of Patterns in Space and Time. pp. 87–102. Edited by W. Jager and J.D. Murray. Springer-Verlag, New York.

    Google Scholar 

  • Hahn, J.T. and Leary, R.A. 1974. Test of a model of forest succession. For. Sci. 20: 212.

    Google Scholar 

  • Hall, F.G., Strebel, D.E., Goetz, S.J., Woods, K.D. and Botkin, D.B. 1987. Landscape pattern and successional dynamics in the boreal forest. Proc. IGARSS '87 Symp. (Ann Arbor, Mich.-18–21 May 1987) pp. 473–482.

  • Harary, F., Lipstein, B. and Styan, G.P.H. 1970. A matrix approach to nonstationary chains. Operations Res. 18: 1168–1181.

    Google Scholar 

  • Harris, L.D. 1984. The Fragmented Forest. Univ. of Chicago Press, Chicago.

    Google Scholar 

  • Hastings, A. 1980. Disturbance, coexistence, history, and competition for space. Theor. Pop. Biol. 18: 363–373.

    Google Scholar 

  • Henderson, W. and Wilkins, C.W. 1975. The interaction of bushfires and vegetation. Search 6(4): 130–133.

    Google Scholar 

  • Hirabayashi, F. and Kasahara, Y. 1987. A fire-spread simulation model developed as an extension of a dynamic percolation process model. Simulation 49: 254–261.

    Google Scholar 

  • Hobbs, R.J. 1983. Markov models in the study of post-fire succession in heathland communities. Vegetatio 56: 17–30.

    Google Scholar 

  • Hobbs, R.J. and Hobbs, V.J. 1987. Gophers and grassland: A model of vegetation response to patchy soil disturbance. Vegetatio 69: 141–146.

    Google Scholar 

  • Horn, H.S. 1975. Markovian processes of forest succession. In: Ecology and Evolution of Communities. pp. 196–211. Edited by M.L. Cody and J.M. Diamond. Belknap Press, Cambridge, Mass.

    Google Scholar 

  • Horn, H.S. and MacArthur, R.H. 1972. Competition among fugitive species in a harlequin environment. Ecology 53: 749–752.

    Google Scholar 

  • Hubbard, K.G. 1980. Relating fire occurrence to weather conditions on the Great Basin rangelands. J. Range Manage. 33: 360–362.

    Google Scholar 

  • Hulst, R. van 1979. On the dynamics of vegetation: Markov chains as models of succession. Vegetatio 40: 3–14.

    Google Scholar 

  • Iversen, L.R. and Risser, P.G. 1987. Analyzing long-term changes in vegetation with geographic information system and remotely sensed data. Adv. Space Res. 7: 183–194.

    Google Scholar 

  • Jahan, S. 1986. The determination of stability and similarity of Markovian land use change processes. A theoretical and empirical analysis. Socio-Econ. Plan. Sci. 20: 243–251.

    Google Scholar 

  • Jenkins, K.J. and Wright, R.J. 1987. Simulating succession of riparian spruce forests and white-tailed deer carrying capacity in northwestern Montana. West. J. Appl. For. 2: 80–83.

    Google Scholar 

  • Johnson, E.W. 1973. Relationship between point density measurements and subsequent growth of southern pines. Auburn Univ. Agric. Exp. Sta. Bull. 447.

  • Johnson, W.C. 1977. A mathematical model of forest succession and land use for the North Carolina piedmont. Bull. Torr. Bot. Club 104: 334–346.

    Google Scholar 

  • Johnson, W.C. and Sharpe, D.M. 1976. An analysis of forest dynamics in the northern Georgia piedmont. For. Sci. 22: 307–322.

    Google Scholar 

  • Kachi, N., Yasuoka, Y., Totsuka, T. and Suzuki, S. 1986. A stochastic model for describing revegetation following forest cutting: An application of remote sensing. Ecol. Model. 32: 105–117.

    Google Scholar 

  • Karlson, R.H. 1981. A simulation study of growth inhibition and predator resistance in Hydractinia echinata. Ecol. Model. 13: 29–47.

    Google Scholar 

  • Kemeny, J.G. and Snell, J.L. 1960. Finite Markov Chains. D. Van Nostrand, Princeton, New Jersey.

    Google Scholar 

  • Kessell, S.R. 1976. Gradient modeling: A new approach to fire modeling and wilderness resource management. Envir. Manage. 1: 39–48.

    Google Scholar 

  • Kessell, S.R. 1977. Gradient modeling: A new approach to fire modeling and resource management. In: Ecosystem Modeling in Theory and Practice: An Introduction with Case Histories. pp. 575–605. Edited by C.A.S. Hall and J.W. Day, Jr. Wiley, New York.

    Google Scholar 

  • Kessell, S.R. 1979a. Gradient Modeling: Resource and Fire Management. Springer-Verlag, New York.

    Google Scholar 

  • Kessell, S.R. 1979b. Phytosociological inference and resource management. Envir. Manage. 3: 29–40.

    Google Scholar 

  • Kessell, S.R. and Cattelino, P.J. 1978. Evaluation of a fire behavior information integration system for southern California chaparral wildlands. Envir. Manage. 2: 135–159.

    Google Scholar 

  • Kessell, S.R. and Good, R.B. 1982. PREPLAN (Pristine Environment Planning Language and Simulator) user's guide for Kosciusko National Park. National Parks and Wildlife Service of New South Wales Spec. Publ., Sydney.

    Google Scholar 

  • Kessell, S.R., Good, R.B. and Hopkins, A.J.M. 1984. Implementation of two new resource management information systems in Australia. Envir. Manage. 8: 251–270.

    Google Scholar 

  • Lefkovitch, L.P. 1965. The study of population growth in organisms grouped by stages. Biometrics 21: 1–18.

    Google Scholar 

  • Lefkovitch, L.P. and Fahrig, L. 1985. Spatial characteristics of habitat patches and population survival. Ecol. Model. 30: 297–308.

    Google Scholar 

  • Leslie, P.H. 1945. On the use of matrices in population mathematics. Biometrika 35: 213–245.

    Google Scholar 

  • Leslie, P.H. 1959. The properties of a certain lag type of population growth and the influence of an external random factor on a number of such populations. Physiol. Zool. 32: 151–159.

    Google Scholar 

  • Levin, S.A. 1974. Dispersion and population interactions. Am. Natur. 108: 207–228.

    Google Scholar 

  • Levin, S.A. 1976. Population dynamic models in heterogenous environments. Ann. Rev. Ecol. Syst. 7: 287–310.

    Google Scholar 

  • Levin, S.A. and Paine, R.T. 1974. Disturbance, patch formation, and community structure. Proc. Nat. Acad. Sci. 71: 2744–2747.

    Google Scholar 

  • Lillesand, T.M. and Kiefer, R.W. 1979. Remote Sensing and Image Interpretation. John Wiley & Sons, New York.

    Google Scholar 

  • Lippe, E., DeSmidt, J.T. and Glenn-Lewin, D.C. 1985. Markov models and succession: A test from a heathland in the Netherlands. J. Ecol. 73: 775–791.

    Google Scholar 

  • Long, J.F. and McMillen, D.B. 1987. A survey of Census Bureau population projection methods. Climatic Change 11: 141–177.

    Google Scholar 

  • Loucks, O.L., Ek, A.R., Johnson, W.C. and Monserud, R.A. 1981. Growth, aging and succession. In: Dynamic Properties of Forest Ecosystems. pp. 37–85. Edited by D.E. Reichle. Cambridge Univ. Press, Cambridge.

    Google Scholar 

  • Lough, T.J., Wilson, J.B., Mark, A.F. and Evans, A.C. 1987. Succession in a New Zealand alpine cushion community: A Markovian model. Vegetatio 71: 129–138.

    Google Scholar 

  • Lowry, I.S. 1964. A Model of Metropolis. Rand Corporation, Santa Monica, California.

    Google Scholar 

  • Lynch, T.B. and Moser, J.W., Jr. 1986. A growth model for mixed species stands. For. Sci. 32: 697–706.

    Google Scholar 

  • Mackey, H.E., Jr. and Sivec, N. 1959. The present composition of a former oak-chestnut forest in the Allegheny Mountains of western Pennsylvania. Ecology 54: 915–918.

    Google Scholar 

  • Maguire, L.A. and Porter, J.W. 1977. A spatial model of growth and competition strategies in coral communities. Ecol. Model. 3: 249–271.

    Google Scholar 

  • Marsden, M.A. 1983. Modeling the effect of wildfire frequency on forest structure and succession in the northern Rocky Mountains. J. Envir. Manage. 16: 45–62.

    Google Scholar 

  • Massy, W.F., Montgomery, D.B. and Morrison, D.G. 1970. Stochastic Models of Buying Behavior. M.I.T. Press, Cambridge, Mass.

    Google Scholar 

  • McGinnis, R. 1968. A stochastic model of social mobility. Am. Soc. Rev. 33: 712–722.

    Google Scholar 

  • McKendrick, A.C. 1926. Applications of mathematics to medical problems. Proc. Edinburgh Math. Soc. 44: 98–130.

    Google Scholar 

  • Meentemeyer, V. and Box, E.O. 1987. Scale effects in landscape studies. In: Landscape Heterogeneity and Disturbance. pp. 15–34. Edited by M.G. Turner. Springer-Verlag, New York.

    Google Scholar 

  • Menges, E.S. and Loucks, O.L. 1984. Modeling a diseasecaused patch disturbance: Oak wild in the midwestern United States. Ecology 65: 487–498.

    Google Scholar 

  • Mintz, Y. 1984. The sensitivity of numerically simulated climates to land-surface boundary conditions. In: The Global Climate. pp. 79–105. Edited by J.T. Houghton. Cambridge Univ. Press, Cambridge.

    Google Scholar 

  • Mueller-Dombois, D. 1987. Natural dieback in forests. BioScience 37: 575–583.

    Google Scholar 

  • Naveh, Z. and Lieberman, A.S. 1984. Landscape Ecology. Theory and Applications. Springer-Verlag, New York.

    Google Scholar 

  • Nisbet, R.M. and Gurney, W.S.C. 1982. Modelling Fluctuating Populations. John Wiley and Sons, Chichester, U.K.

    Google Scholar 

  • Noordwijk-Puijk, K. van, Beeftink, W.G. and Hogeweg, P. 1979. Vegetation development on salt-marsh flats after disappearance of the tidal factor. Vegetatio 39: 1–13.

    Google Scholar 

  • Oster, G. and Takahashi, Y. 1974. Models for age-specific interactions in a periodic environment. Ecol. Monogr. 44: 483–501.

    Google Scholar 

  • Pacala, S.W. and Silander, J.A., Jr. 1985. Neighborhood models of plant population dynamics. I. Single-species models of annuals. Am. Natur. 125: 385–411.

    Google Scholar 

  • Paine, R.T. and Levin, S.A. 1981. Intertidal landscapes: Disturbance and the dynamics of pattern. Ecol. Monogr. 51: 145–178.

    Google Scholar 

  • Pearlstine, L., McKellar, M. and Kitchens, W. 1985. Modelling the impacts of a river diversion on bottomland forest communities in the Santee River floodplain, South Carolina. Ecol. Model. 29: 283–302.

    Google Scholar 

  • Pennycuick, C.J., Compton, R.M. and Beckingham, L. 1968. A computer model for simulating the growth of a population, or of two interacting populations. J. Theoret. Biol. 18: 316–329.

    Google Scholar 

  • Pfeifer, P.E. and Deutsch, S.J. 1980. A STARIMA model-building procedure with application to description and regional forecasting. Inst. Brit. Geogr. Trans., n.s. 5: 330–349.

    Google Scholar 

  • Pickett, S.T.A. and White, P.S., eds. 1985. The Ecology of Natural Disturbance and Patch Dynamics. Academic Press, New York.

    Google Scholar 

  • Pickles, A. 1980. Models of movement: A review of alternative methods. Envir. and Planning A 12: 1383–1404.

    Google Scholar 

  • Potter, M.W. and Kessell, S.R. 1980. Predicting mosaics and wildlife diversity resulting from fire disturbance to a forest ecosystem. Envir. Manage. 4: 247–254.

    Google Scholar 

  • Potter, M.W., Kessell, S.R. and Cattelino, P.J. 1979. FOR-PLAN: A FORest Planning LANguage simulator. Envir. Manage. 3: 59–72.

    Google Scholar 

  • Price, M. 1986. The analysis of vegetation change by remote sensing. Prog. Physical Geogr. 10: 473–491.

    Google Scholar 

  • Rees, P. 1986. Developments in the modeling of spatial populations. In: Population Structures and Models. pp. 97–125. Edited by R. Woods and P. Rees. Allen & Unwin, Boston.

    Google Scholar 

  • Rees, P. and Wilson, A.G. 1977. Spatial Population Analysis. Edward Arnold, London.

    Google Scholar 

  • Rejmanek, M., Sasser, C.E. and Gosselink, J.G. 1987. Modeling of vegetation dynamics in the Mississippi River deltaic plain. Vegetatio 69: 133–140.

    Google Scholar 

  • Risser, P.G. 1987. Landscape ecology: State of the art. In: Landscape Heterogeneity and Disturbance. pp. 3–14. Edited by M.G. Turner. Springer-Verlag, New York.

    Google Scholar 

  • Risser, P.G., Karr, J.R. and Forman, R.T.T. 1984. Landscape Ecology: Directions and Approaches. Illinois Natural History Survey Special Publ. 2, Champaign, Illinois.

  • Roberts, M.R. and Hruska, A.J. 1986. Predicting diameter distributions: A test of the stationary Markov model. Can. J. For. Res. 16: 130–135.

    Google Scholar 

  • Robinson, V.B. 1978. Information theory and sequences of land use: An application. Prof. Geogr. 30: 174–179.

    Google Scholar 

  • Rogers, A. 1975. Introduction to Multiregional Mathematical Demography. Wiley, New York.

    Google Scholar 

  • Rogers, A. 1985. Regional Population Projection Models. Sage, Beverly Hills.

    Google Scholar 

  • Rothermel, R.C. 1972. A mathematical model for predicting fire spread in wildland fuels. USDA For. Serv. Res. Paper INT-137, Intermt. Res. Sta., Ogden, Utah.

    Google Scholar 

  • Sellers, P.J., Mintz, Y., Sud, Y.C. and Dalcher, A. 1986. A simple biosphere model (SiB) for use with general circulation models. J. Atmos. Sci. 43: 505–531.

    Google Scholar 

  • Sharpe, D.M., Stearns, F.W., Burgess, R.L. and Johnson, W.C. 1981. Spatio-temporal patterns of forest ecosystems in man-dominated landscapes. In: Perspectives in Landscape Ecology: Contributions to Research, Planning and Management of Our Environment. pp. 109–116. Edited by S.P. Tjallingii and A.D. de Veer. Centre for Agricultural Publishing and Documentation, Wageningen.

    Google Scholar 

  • Shugart, H.H. 1984. A Theory of Forest Dynamics. Springer-Verlag, New York.

    Google Scholar 

  • Shugart, H.H., Jr., Crow, T.R. and Hett, J.M. 1973. Forest succession models: A rationale and methodology for modeling forest succession over large regions. For. Sci. 19: 203–212.

    Google Scholar 

  • Shugart, H.H., Jr., Crow, T.R. and Hett, J.M. 1974. Reply to Jerold T. Hahn and Rolfe A. Leary on forest succession models. For. Sci. 20: 213.

    Google Scholar 

  • Shugart, H.H., Jr. and Noble, I.R. 1981. A computer model of succession and fire response of the high-altitude Eucalyptus forest of the Brindabella Range, Australian Capital Territory. Austr. J. Ecol. 6: 149–164.

    Google Scholar 

  • Shugart, H.H., Jr. and Seagle, S.W. 1985. Modeling forest landscapes and the role of disturbance in ecosystems and communities. In: The Ecology of Natural Disturbance and Patch Dynamics. pp. 353–368. Edited by S.T.A. Pickett and P.S. White. Academic Press, New York.

    Google Scholar 

  • Shugart, H.H., Jr. and West, D.C. 1977. Development of an Appalachian deciduous forest succession model and its application to assessment of the impact of the chestnut blight. J. Envir. Manage. 5: 161–179.

    Google Scholar 

  • Shugart, H.H., Jr. and West, D.C. 1980. Forest succession models. BioScience 30: 308–313.

    Google Scholar 

  • Simmons, A.J. and Bengtsson, L. 1984. Atmospheric general circulation models: their design and use for climate studies. In: The Global Climate. pp. 37–62. Edited by J.T. Houghton. Cambridge Univ. Press, Cambridge.

    Google Scholar 

  • Sinko, J.W. and Streifer, W. 1967. A new model for age-size structure of a population. Ecology 48: 910–918.

    Google Scholar 

  • Sinko, J.W. and Streifer, W. 1969. Applying models incorporating age-size structure to Daphnia. Ecology 50: 608–615.

    Google Scholar 

  • Sklar, F.H. and Costanza, R. 1986. A spatial simulation of ecosystem succession in a Louisiana coastal landscape. In: Proceedings of the 1986 Summer Computer Simulation Conference. pp. 467–472. Edited by R. Crosbie and P. Luker. Society for Computer Simulation.

  • Sklar, F.H., Costanza, R. and Day, J.W., Jr. 1985. Dynamic spatial simulation modeling of coastal wetland habitat succession. Ecol. Model. 29: 261–281.

    Google Scholar 

  • Slatkin, M. 1974. Competition and regional coexistence. Ecology 55: 128–134.

    Google Scholar 

  • Slobodkin, L.B. 1953. An algebra of population growth. Ecology 34: 513–519.

    Google Scholar 

  • Smith, O.L. 1980. The influence of environmental gradients on ecosystem stability. Am. Natur. 116: 1–24.

    Google Scholar 

  • Solbrig, O.T., Sarandon, R. and Bossert, W. 1988. A density-dependent growth model of a perennial herb, Viola fimbriatula. Am. Natur. 131: 385–400.

    Google Scholar 

  • Spilerman, S. 1972. The analysis of mobility processes by the introduction of independent variables into a Markov chain. Am. Soc. Rev. 37: 277–294.

    Google Scholar 

  • Stauffer, D. 1985. Introduction to Percolation Theory. Taylor and Francis, London.

    Google Scholar 

  • Stephens, G.R. and Waggoner, P.E. 1970. The forest anticipated from 40 years of natural transitions in mixed hardwoods. Conn. Agric. Exp. Sta. Bull. 707.

  • Streifer, W. 1974. Realistic models in population ecology. Adv. Ecol. Res. 8: 199–266.

    Google Scholar 

  • Thomas, G. and Henderson-Sellers, A. 1987. Evaluation of satellite derived land cover characteristics for global climate modelling. Clim. Change 11: 313–347.

    Google Scholar 

  • Tongeren, O. van and Prentice, I.C. 1986. A spatial simulation model for vegetation dynamics. Vegetatio 65: 163–173.

    Google Scholar 

  • Turnbull, K.J. 1963. Population dynamics in mixed forest stands. A system of mathematical models of mixed stand growth and structure. PhD. Diss., Univ. of Wash., Seattle.

    Google Scholar 

  • Turner, M.G. 1987. Spatial simulation of landscape changes in Georgia: A comparison of 3 transition models. Landscape Ecology 1: 29–36.

    Google Scholar 

  • Turner, M.G., in press. A spatial simulation model of land use changes in a piedmont county in Georgia. Appl. Math. Comp.

  • Turner, M.G., Gardner, R.H., Dale, V.H. and O'Neill, R.V. 1988. Landscape pattern and the spread of disturbance. Proc. VIIIth Intern. Symp. Problems of Landscape Ecol. Res. (Oct. 3–7, 1988).

  • Usher, M.B. 1966. A matrix approach to the management of renewable resources, with special reference to selection forests. J. Appl. Ecol. 3: 355–367.

    Google Scholar 

  • Usher, M.B. 1972. Developments in the Leslie matrix model. In: Mathematical Models in Ecology. pp. 29–60. Edited by J.N.R. Jeffers. Blackwell, Oxford.

    Google Scholar 

  • Usher, M.B. 1981. Modeling ecological succession, with particular reference to Markovian models. Vegetatio 46: 11–18.

    Google Scholar 

  • Usher, M.B. and Parr, T.W. 1977. Are there successional changes in arthropod decomposer communities? J. Envir. Manage. 5: 151–160.

    Google Scholar 

  • Usher, M.B. and Williamson, M.H. 1970. A deterministic matrix model for handling the birth, death, and migration processes of spatially distributed populations. Biometrics 26: 1–12.

    Google Scholar 

  • Vale, T.R. 1982. Plants and People: Vegetation Change in North America. Resource Publications in Geography, Association of American Geographers, Washington, D.C.

    Google Scholar 

  • Vandermeer, J. 1978. Choosing category size in a stage projection matrix. Oecologia 32: 79–84.

    Google Scholar 

  • Von Foerster, H. 1959. Some remarks on changing populations. In: The Kinetics of Cellular Proliferation. pp. 382–407. Edited by F. Stohlman Jr. Grune and Stratton, New York.

    Google Scholar 

  • Weiner, J. and Conte, P.T. 1981. Dispersal and neighborhood effects in an annual plant competition model. Ecol. Model. 13: 131–147.

    Google Scholar 

  • Weinstein, D.A. and Shugart, H.H. 1983. Ecological modeling of landscape dynamics. In: Disturbance and Ecosystems: Components of Response. pp. 29–45. Edited by H.A. Mooney and M. Godron. Springer-Verlag, New York.

    Google Scholar 

  • Wilkie, D.S. and Finn, J.T. 1988. A spatial model of land use and forest regeneration in the Ituri forest of northeastern Zaire. Ecol. Model. 41: 307–323.

    Google Scholar 

  • Wilkins, C.W. 1977. A stochastic analysis of the effect of fire on remote vegetation. PhD Diss., Univ. of Adelaide, South Australia.

    Google Scholar 

  • Williams, W.T., Lance, G.N., Webb, L.J., Tracey, J.G. and Dale, M.B. 1969. Studies in the numerical analysis of complex rainforest communities. III. The analysis of successional data. J. Ecol. 57: 515–536.

    Google Scholar 

  • Wilson, A.G. 1974. Urban and Regional Models in Geography and Planning. Wiley, Chichester, U.K.

    Google Scholar 

  • Wilson, A.G. 1987. Transport, location and spatial systems: Planning with spatial interaction models. In: Urban Systems: Contemporary Approaches to Modelling. pp. 337–426. Edited by C.S. Bertuglia, G. Leonardi, S. Occelli, G.A. Rabino, R. Tadei and A.G. Wilson. Croom Helm, London.

    Google Scholar 

  • Wilson, M.F., Henderson-Sellers, A., Dickinson, R.E. and Kennedy, P.J. 1987. Sensitivity of the biosphere-atmosphere transfer scheme (BATS) to the inclusion of variable soil characteristics. J. Clim. Appl. Meteor. 26: 341–362.

    Google Scholar 

  • Woods, R. and Rees, P., eds. 1986. Population Structures and Models. Allen and Unwin, London.

    Google Scholar 

  • Woolhouse, M.E.J. and Harmsen, R. 1987. A transition matrix model of seasonal changes in mite populations. Ecol. Model. 37: 167–189.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baker, W.L. A review of models of landscape change. Landscape Ecol 2, 111–133 (1989). https://doi.org/10.1007/BF00137155

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00137155

Keywords

Navigation