Skip to main content
Log in

Optical flow using spatiotemporal filters

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

A model is presented, consonant with current views regarding the neurophysiology and psychophysics of motion perception, that combines the outputs of a set of spatiotemporal motion-energy filters to estimate image velocity. A parallel implementation computes a distributed representation of image velocity. A measure of image-flow uncertainty is formulated; preliminary results indicate that this uncertainty measure may be used to recognize ambiguity due to the aperture problem. The model appears to deal with the aperture problem as well as the human visual system since it extracts the correct velocity for some patterns that have large differences in contrast at different spatial orientations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S.T., Barnard and W.B., Thomson, “Disparity analysis of images,” IEEE Trans. Pami-2(4), pp. 333–340, 1980.

    Google Scholar 

  2. B.K.P., Horn and B.G., Schunk, “Determining optical flow,” Artificial Intelligence, vol. 17; pp. 185–203, 1981.

    Google Scholar 

  3. J.K., Kearney and W.B., Thompson, “An error analysis of gradient-based methods for optical flow estimation,” IEEE Trans. Pami-9(2), pp. 229–244, 1987.

    Google Scholar 

  4. H., Gafni and Y., Zeevi, “A model for separation of spatial and temporal information in the visual system,” Biological Cybernetics, vol. 28; pp. 73–82, 1977.

    Google Scholar 

  5. H., Gafni and Y., Zeevi, “A model for processing of movement in the visual system,” Biological Cybernetics, vol. 32; pp. 165–173, 1979.

    Google Scholar 

  6. M., Fahle and T., Poggio, “Visual hyperacuity: Spatiotemporal interpolation in human vision,” Proc. R. Soc. (London), vol. 213; pp. 451–477, 1981.

    Google Scholar 

  7. A.B. Watson and A.J. Ahumada, “A look at motion in the frequency domain,” Tech. Rep. 84352, NASA-Ames Research Center, 1983.

  8. A.B., Watson and A.J., Ahumada, “Model of human visual-motion sensing,” J. Opt. Soc. Amer. vol. A 2(2); pp. 322–342, 1985.

    Google Scholar 

  9. E.H., Adelson and J.R., Bergen, “Spatiotemporal energy models for the perception of motion,” J. Opt. Soc. Amer., vol. A2(2), pp. 284–299, 1985.

    Google Scholar 

  10. J.P.H.van, Santen and G., Sperling, “Elaborated reichardt detectors,” J. Opt. Soc. Amer., vol. A2(2); pp. 300–321, 1985.

    Google Scholar 

  11. D.J. Fleet, The early processing of spatio-temporal visual information, Master's thesis, Dept. of Computer Science, Univ. of Toronto, 1984. (available as Tech. Report RBCVTR-84-7.)

  12. D.J. Fleet and A.D. Jepson, “A cascaded filter approach to the construction of velocity selective mechanisms,” Tech. Report RBCV-TR-84-6, Dept. of Computer Science, Univ. Toronto, 1984.

  13. E.C., Hildreth, “Computations underlying the measurement of visual motion,” Artificial Intelligence, vol. 23(3); pp. 309–355, 1984.

    Google Scholar 

  14. D., Gabor, “Theory of communication,” J. IEE (London), vol. 93; pp. 429–457, 1946.

    Google Scholar 

  15. J.G., Daugman, “Two-dimensional analysis of cortical receptive field profiles,” Vision Research, vol. 20; pp. 846–856, 1980.

    Google Scholar 

  16. J.G., Daugman, “Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters,” J. of the Opt. Soc. of Amer., vol. A2(7); pp. 1160–1169, 1985.

    Google Scholar 

  17. David J., Heeger, “A model for the extraction of image flow,” J. Opt. Soc. Amer., vol A4(8); pp. 1455–1471, 1987.

    Google Scholar 

  18. David J. Heeger, “Models for motion perception,” Ph.D. thesis, CIS Department, Univ. of Pennsylvania, 1987. (Available as technical report MS-CIS-87-91.)

  19. S.G., Mallat, “Scale change versus scale space representation,” in Proc. First Int Conf. on Computer Vision, pp. 592–596, IEEE, London, 1987.

    Google Scholar 

  20. P., Burt, “Fast algorithms for estimating local image properties,” Computer Vision, Graphics, and Image Processing, vol. 21; pp. 368–382, 1983.

    Google Scholar 

  21. D.C., Burr and J., Ross, “Contrast sensitivity at high velocities,” Vision Research, vol. 22; pp. 479–484, 1982.

    Google Scholar 

  22. P.E., Gill, W., Murray, and M.H., Wright, Practical Optimization. Academic Press: New York, 1981.

    Google Scholar 

  23. R.A., Hummel and S.W., Zucker, “On the foundations of relaxing labelling processes,” IEEE Pami-5(3); pp. 267–287, 1983.

    Google Scholar 

  24. D., Terzopoulos, “Regularization of inverse visual problems involving discontinuities,” IEEE Pami-8(4), pp. 413–424, 1986.

    Google Scholar 

  25. T., Poggio, V., Torre, and C., Koch, “Computational vision and regularization theory,” Nature, vol. 317(6035); pp. 314–319, 1985.

    Google Scholar 

  26. D., Marr and E., Hildreth, “Theory of edge detection,” Proc. Roy. Soc. (London), vol. B207; pp. 187–217, 1980.

    Google Scholar 

  27. D.E., Rummelhart and J.L., McClelland, eds., Parallel Distributed Processing: Explorations in the Microstructure of Cognition. Mit Press: Cambridge, Mass., 1986.

    Google Scholar 

  28. B.B., Mandlebrot, The Fractal Geometry of Nature. W.H. Freeman: New York, 1983.

    Google Scholar 

  29. M.H., DeGroot, Probability and Statistics. Addison-Wesley: Menlo Park, Calif., 1975.

    Google Scholar 

  30. J., Melsa and D., Cohn, Decision and Estimation Theory. McGraw-Hill: New York, 1978.

    Google Scholar 

  31. E.H., Adelson and J.A., Movshon, “Phenomenal coherence of moving visual patterns,” Nature vol. 300(5892); pp. 523–525, 1982.

    Google Scholar 

  32. E.H. Adelson, Media-Technology Laboratory, MIT, personal communication.

  33. M.P., doCarmo, Differential Geometry of Curves and Surfaces. Prentice-Hall: Englewood Cliffs, N.J., 1976.

    Google Scholar 

  34. E.H. Adelson and E. Simonelli, “Orthogonal pyramid transfers for image coding,” in PROC. SPIE, VISUAL COMMUN. and IMAGE PROC. II, pp. 50–58, Cambridge, MA, 1987.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heeger, D.J. Optical flow using spatiotemporal filters. Int J Comput Vision 1, 279–302 (1988). https://doi.org/10.1007/BF00133568

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00133568

Keywords

Navigation