Skip to main content
Log in

Information theory methods for the study of spatial processes and succession

  • Published:
Vegetatio Aims and scope Submit manuscript

Abstract

The use of mathematical methods based on Shannon's entropy function is proposed for the evaluation of the consequences of sampling unit size and for the study of vegetation succession. The concept of diversity is extended to sets of phytosociological relevés under the term florula diversity. It is shown that Shannon's entropy as well as two other related characteristic functions can express the local behaviour and overall relationships of species. Characteristic areas are defined in terms of the maxima and minima of these functions. Several study areas yielded the data which are used in the examples. Some theoretical problems of the methods are discussed and a computer, written in FORTRAN, is described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aitchison, J. & Brown, J. A. C., 1966. The lognormal distribution. Cambridge University Press, London.

    Google Scholar 

  • Auclair, A. N. & Goff, F. G., 1971. Diversity relations of upland forests in the western Great Lakes area. Am. Nat. 105: 499–528.

    Google Scholar 

  • Cain, S. A. & Castro, G. M. de O., 1959. Manual of vegetation analysis. Harper, New York.

    Google Scholar 

  • Cliff, A. D. & Ord, J. K., 1981. Spatial processes, models and applications. Pion, London.

    Google Scholar 

  • Cormack, R. M., 1971. A review of classification. J. Roy. Stat. Soc. series A 134: 321–367.

    Google Scholar 

  • Dévai, I., Horváth, K. & Juhász-Nagy, P., 1971. Some problems of model building in synbiology. Part 1. Spatial diversity process of the binary type in a simple situation. Ann. Univ. Sci. Budapest. sectio Biol. 13: 19–32.

    Google Scholar 

  • Falinski, J. B. (ed.)., 1977. Vegetation dynamics. Proceedings of the third symposium of the working group on succession research on permanent plots. Phytocoenosis 7.

  • Fekete, G. & Szöcs, Z., 1971. Studies on interspecific association processes in space. Acta. Bot. Acad. Sci. Hung. 20: 227–241.

    Google Scholar 

  • Feoli, E., Lagonegro, M., & Orlóci, L., 1982. Information analysis in vegetation research (manuscript in press).

  • Gittins, R., 1981. Towards the analysis of vegetation succession. Vegetatio 46: 37–59.

    Google Scholar 

  • Goodall, D. W., 1961. Objective methods for the classification of vegetation. IV. Pattern and minimal area. Aust. J. Bot. 9: 162–196.

    Google Scholar 

  • Gounot, M. & Calléja, M., 1962. Coefficient de communauté, homogeneité et aire minimale. Bull. Serv. Carte Phytogéogr. Ser. B. 7: 181–200.

    Google Scholar 

  • Grassle, J. F., Patil, G. P., Smith, W. K. & Taillie, C., (eds.)., 1979. Ecological diversity in theory and practice. Statistical ecology, vol. 6. International Co-operative Publ. House, Fairland, Maryland.

    Google Scholar 

  • Green, R. H., 1979. Sampling design and statistical methods for environmental biologists. Wiley, New York.

    Google Scholar 

  • Greig-Smith, P., 1952. The use of random and contiguous quadrats in the study of the structure of plant communities. Ann. Bot. 16: 293–316.

    Google Scholar 

  • Greig-Smith, P., 1964. Quantitative plant ecology. Butterworths, London.

    Google Scholar 

  • Horn, H. S., 1975. Markevian properties of forest succession. In: M. L. Cody & J. M. Diamonds (eds.), Ecology and evolution of communities. pp. 196–211. Harvard Univ. Press, Cambridge, Massachusetts.

    Google Scholar 

  • Horn, H. S., 1981. Succession. In: R. M. May (ed.), Theoretical ecology. 2nd ed., pp. 253–271, Sinauer, Sunderland.

    Google Scholar 

  • Hulst, R. van, 1979. On the dynamics of vegetation: Markov chains as models of succession. Vegetatic 40: 3–14.

    Google Scholar 

  • Juhász-Nagy, P., 1963. Investigations on the Bulgarian vegetation. Some hygrophilous plant communities I–III. Acta Biol. Debrecina 2: 47–70.

    Google Scholar 

  • Juhász-Nagy, P., 1967. On some ‘characteristic areas’ of plant community stands. Proceedings of the Colloqium on Information Theory, Bolyai Mathematical Society (ed. A. Rényi). Akadémiai Kiadó, Budapest, pp. 269–282.

    Google Scholar 

  • Juhász-Nagy, P., 1976. Spatial dependence of plant populations. Part I. Equivalence analysis (an outline for a new model). Acta Bot. Acad. Sci. Hung. 22: 61–78.

    Google Scholar 

  • Juhász-Nagy, P., 1982. Spatial dependence of plant populations. Part II. A family of new models. Acta Bot. Acad. Sci. Hung. (in press)

  • Kullback, S., 1959. Information theory and statistics. Wiley, New York.

    Google Scholar 

  • LaFrance, C. R., 1972. Sampling and ordination characteristics of computer-simulated individualistic communities. Ecology 53: 387–397.

    Google Scholar 

  • Loucks, O. L., 1970. Evolution of diversity, efficiency, and community stability. Am. Zool. 10: 17–25.

    Google Scholar 

  • Maarel, E. van der, 1979. Multivariate methods in phytosociology, with reference to the Netherlands. In: M. J. A. Werger (ed.), The study of vegetation. pp. 161–225. Junk, The Hague. Maarel, E. van der (ed.), 1980. Advances in Vegetation Science: Succession. Vegetatio 43: 1–151.

    Google Scholar 

  • Matthews, J. A., 1978. An application of non-metric multidimensional scaling to the construction of an improved species plexus. J. Ecol. 66: 157–173.

    Google Scholar 

  • Matthews, J. A., 1979. A study of the variability of some successional and climax plant assemblage types using multiple discriminant analysis. J. Ecol. 67: 255–271.

    Google Scholar 

  • Moravec, J., 1973. The determination of minimal area of phytocoenoses. Fol. Geobot. Phytotax. 8: 23–47.

    Google Scholar 

  • Noy-Meir, I. & Anderson, D. J., 1971. Multiple pattern analysis, or multiscale ordination: towards a vegetation hologram? In: G. P. Patil, E. C. Pielou & W. E. Waters (eds.), Many species populations, ecosystems, and systems analysis. Stat. Ecol. 3. pp. 207–225. Pennsylvania State Univ. Press.

  • Orlóci, L., 1971. An information theory model for pattern analysis. J. Ecol. 59: 343–349.

    Google Scholar 

  • Orlóci, L., 1978. Multivariate analysis in vegetation research. 2nd ed. Junk, The Hague.

    Google Scholar 

  • Orlóci, L., 1981. Probing time series vegetation data for evidence of succession. Vegetatio 46: 31–35.

    Google Scholar 

  • Pielou, E. C., 1975. Ecological diversity. Wiley, New York.

    Google Scholar 

  • Pielou, E. C., 1977. Mathematical ecology. Wiley, New York.

    Google Scholar 

  • Pineda, F. D., Nicolas, J. P., Ruiz, M., Peco, B. & Bernaldez, F. G., 1981. Succession, diversité et amplitude de niche dans les pâturages du centre de la péninsule ibérique. Vegetatio 47: 267–277.

    Google Scholar 

  • Rodani, J., 1980. SYN-TAX: Computer program package for cluster analysis in ecology, phytosociology and taxonomy. Abstracta Botanica (Budapest) 6: 1–158. (in Hungarian with English summ.)

    Google Scholar 

  • Radford, A. E., Dickison, W. C., Massey, J. R. & Bell, C. R., 1974. Vascular plant systematies. Harper and Row, New York.

    Google Scholar 

  • Rényi, A., 1961. On measures of entropy and information. In: J. Neyman (ed.), Proceedings of the 4th Berkeley Symposium on Mathematical statistics and probability. pp. 547–561. Berkeley Univ. Press.

  • Sneath, P. H. A. & Sokal, R. R., 1973. Numerical taxenomy, Freeman, San Francisco.

    Google Scholar 

  • Soó, R., 1964. A magyar flóra és vegetáció rendszertani-növényföldrajzi kézikönyve (Synopsis systematico-geobotanica florae vegetationisque Hungaríac). vol. 1. Akadémiai Kiadé, Budapest.

    Google Scholar 

  • Stoianey, N., Stefanoy, B. & Kitanoy, B., 1966–67. Flora Bulgarica. 4th ed. Nauka i Iskustvo, Sophia.

    Google Scholar 

  • Szöcs, Z., 1979. New computer-oriented methods for the study of natural and simulated vegetation structure. In: L. Orlóci, C. R. Rao & W. M. Stiteler (eds.), Multivariate methods in ecological work. Statistical Ecology, vol. 7, pp. 301–308. International Co-operative Publ. House, Fairland, Maryland.

    Google Scholar 

  • Usher, M. B., 1981. Modelling ecological succession, with particular reference to Markovian models. Vegetatio 46: 11–18.

    Google Scholar 

  • Whittaker, R. H., 1967. Gradient analysis of vegetation. Biol. Rev. 42: 207–264.

    Google Scholar 

  • Williams, W. T., Lance, G. N., Webb, L. J., Tracey, J. G. & Connell, J. H., 1969. Studies in the numerical analysis of complex rain-forest communities. IV. A method for the clucidation of small-scale forest pattern. J. Ecol. 57: 635–654.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Nomenclature follows Stojanov et al. (1966–67) for taxa and Soó (1964) for syntaxa.

We are much indebted to Prof. L. Orlóci, University of Western Ontario, for his critical review of the manuscript. We also thank N. Kenkel, University of Western Ontario, and a referee of the first draft of the paper, for their comments and suggestions.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Juhász-Nagy, P., Podani, J. Information theory methods for the study of spatial processes and succession. Vegetatio 51, 129–140 (1983). https://doi.org/10.1007/BF00129432

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00129432

Keywords

Navigation