Skip to main content
Log in

Biodegradation of polycyclic aromatic hydrocarbons

Biodegradation Aims and scope Submit manuscript

Abstract

The intent of this review is to provide an outline of the microbial degradation of polycyclic aromatic hydrocarbons. A catabolically diverse microbial community, consisting of bacteria, fungi and algae, metabolizes aromatic compounds. Molecular oxygen is essential for the initial hydroxylation of polycyclic aromatic hydrocarbons by microorganisms. In contrast to bacteria, filamentous fungi use hydroxylation as a prelude to detoxification rather than to catabolism and assimilation. The biochemical principles underlying the degradation of polycyclic aromatic hydrocarbons are examined in some detail. The pathways of polycyclic aromatic hydrocarbon catabolism are discussed. Studies are presented on the relationship between the chemical structure of the polycyclic aromatic hydrocarbon and the rate of polycyclic aromatic hydrocarbon biodegradation in aquatic and terrestrial ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Akhtar MN, Boyd DR, Thomas NJ, Koreeda M, Gibson DT, Mahadevan V & Jerina DM (1975) Absolute stereochemistry of the dihydroanthracene cis- and trans-1,2-diols produced from anthracene by mammals and bacteria. J. Chem. Soc. Perkin Trans. I: 2506–2511

    Google Scholar 

  • Aronstein BN, Calvillo YM & Alexander M (1991) Effect of surfactants at low concentrations on the desorption and biodegradation of sorbed aromatic compounds in soil. Environ. Sci. Technol. 25: 1728–1731

    Google Scholar 

  • Atlas RM (1991) Microbial hydrocarbon degradation-Bioremediation of oil spills. J. Chem. Technol. Biotechnol. 52: 149–156

    Google Scholar 

  • Aust SD (1990) Degradation of environmental pollutants by Phanerochaete chrysosporium. Microb. Ecol. 20: 197–209

    Google Scholar 

  • Barnsley EA (1975) Bacterial degradation of fluoranthene and benzo[a]pyrene. Can. J. Microbiol. 21: 1004–1008

    Google Scholar 

  • Barnsley EA (1976a) Role and regulation of the ortho and meta pathways of catechol metabolism in pseudomonads metabolizing naphthalene and salicylate. J. Bacteriol. 125: 404–408

    Google Scholar 

  • Barnsley EA (1976b) Naphthalene metabolism by Pseudomonas: the oxidation of 1,2-dihydroxynapthalene to 2-hydroxychromene-2-carboxylic acid and the formation of 2-hydroxy-benzalpyruvate. Biochem. Biophys. Res. Commun. 72: 1116–1121

    Google Scholar 

  • Barnsley EA (1983) Bacterial oxidation of naphthalene and phenanthrene. J. Bacteriol. 153: 1069–1071

    Google Scholar 

  • Bauer JE & Capone DG (1985) Degradation and mineralization of the polycyclic aromatic hydrocarbons anthracene and naphthalene in intertidal marine sediments. Appl. Environ. Microbiol. 50: 80–90

    Google Scholar 

  • Bauer JE & Capone DG (1988) Effects of co-occurring aromatic hydrocarbons on the degradation of individual polycyclic aromatic hydrocarbons in marine sediment slurries. Appl. Environ. Microbiol. 54: 1649–1655

    Google Scholar 

  • Boronin AM, Kochetkov VV & Skryabin GK (1980) Incompatibility groups of naphthalene degradative plasmids in Pseudomonas. FEMS Microbiol. Lett. 7: 249–252

    Google Scholar 

  • Brusseau GA, Hsien-Chyang T, Hanson RS & Wackett LP (1990) Optimization of trichloroethylene oxidation by methanotrophs and the use of a colorimetric assay to detect soluble methane monooxygenase activity. Biodegradation 1: 19–29

    Google Scholar 

  • Bumpus JA (1989) Biodegradation of polycyclic aromatic hydrocarbons by Phanerochaete chrysosporium. Appl. Environ. Microbiol. 55: 154–158

    Google Scholar 

  • Bumpus JA, Tien M, Wright D & Aust SD (1985) Oxidation of persistent environmental pollutants by a white rot fungus. Science 228: 1434–1436

    Google Scholar 

  • Cane PA & Williams PA (1982) The plasmid-coded metabolism of naphthalene and 2-methylnaphthalene in Pseudomonas strains. Phenotypic changes correlated with structural modification of the plasmid PWW60–1. J. Gen. Microbiol. 128: 2281–2290

    Google Scholar 

  • Catterall FA, Murray K & Williams PA (1971) The configuration of the 1,2-dihydroxy-1,2-dihydronaphthalene formed by the bacterial metabolism of naphthalene. Biochem. Biophys. Acta 237: 361–364

    Google Scholar 

  • Cerniglia CE (1982) Initial reactions in the oxidation of anthracene by Cunninghamella elegans. J. Gen. Microbiol. 128: 2055–2061

    Google Scholar 

  • Cerniglia CE (1984) Microbial metabolism of polycyclic aromatic hydrocarbons. In: Laskin A (Ed) Advances in Applied Microbiology, Vol 30 (pp 31–71). Academic Press, New York

    Google Scholar 

  • Cerniglia CE & Crow SA (1981) Metabolism of aromatic hydrocarbons by yeasts. Arch. Microbiol. 129: 9–13

    Google Scholar 

  • Cerniglia CE & Gibson DT (1977) Metabolism of naphthalene by Cunninghamella elegans. Appl. Environ. Microbiol. 34: 363–370

    Google Scholar 

  • Cerniglia CE & Gibson DT (1978) Metabolism of naphthalene by cell extracts of Cunninghamella elegans. Arch. Biochem. Biophys. 186: 121–127

    Google Scholar 

  • Cerniglia CE & Gibson DT (1979) Oxidation of benzo(a)pyrene by the filamentous fungus Cunninghamella elegans. J. Biol. Chem. 254: 12174–12180

    Google Scholar 

  • Cerniglia CE & Gibson DT (1980a) Fungal oxidation of benzo (a)pyrene and (±)-trans-7,8-dihydroxy-7,8-dihydrobenzo(a) pyrene: evidence for the formation of a benzo(a)pyrene 7,8-diol-9,10-epoxide. J. Biol. Chem. 255: 5159–5163

    Google Scholar 

  • Cerniglia CE & Gibson DT (1980b) Fungal oxidation of (±)-9,10-dihydroxy-9,10-dihydrobenzo(a)pyrene: formation of diastereomeric benzo(a)pyrene 9,10-diol 7,8-epoxides. Proc. Natl. Acad. Sci. U.S.A. 77: 4554–4558

    Google Scholar 

  • Cerniglia CE & Heitkamp MA (1989) Microbial degradation of polycyclic aromatic hydrocarbons in the aquatic environment. In: Varanasi U (Ed) Metabolism of Polycyclic Aromatic Hydrocarbons in the Aquatic Environment (pp 41–68). CRC Press, Boca Raton, FL

    Google Scholar 

  • Cerniglia CE & Yang SK (1984) Stereoselective metabolism of anthracene and phenanthrene by the fungus Cunninghamella elegans. Appl. Environ. Microbiol. 47: 119–124

    Google Scholar 

  • Cerniglia CE, Hebert RL, Dodge RH, Szaniszlo PJ & Gibson DT (1978) Fungal transformation of naphthalene. Arch. Microbiol. 117: 135–143

    Google Scholar 

  • Cerniglia CE, Gibson DT & Van Baalen C (1979) Algal oxidation of aromatic hydrocarbons: formation of 1-naphthol from naphthalene by Agmenellum quadruplicatum strain PR-6. Biochem. Biophys. Res. Commun. 88: 50–58

    Google Scholar 

  • Cerniglia CE, Van Baalen C & Gibson DT (1980a) Metabolism of naphthalene by the blue-green alga, Oscillatoria sp., strain JCM. J. Gen. Microbiol. 116: 485–495

    Google Scholar 

  • Cerniglia CE, Gibson DT & Van Baalen C (1980b) Algal oxidation of naphthalene. J. Gen. Microbiol. 116: 495–500

    Google Scholar 

  • Cerniglia CE, Mahaffey W & Gibson DT (1980c) Fungal oxidation of benzo(a)pyrene: formation of (−)-trans-7,8-dihydroxy-7,8-dihydrobenzo(a)pyrene by Cunninghamella elegans. Biochem. Biophys. Res. Commun. 94: 226–232

    Google Scholar 

  • Cerniglia CE, Dodge RH & Gibson DT (1980d) Studies on the fungal oxidation of polycyclic aromatic hydrocarbons. Bot. Mar. 23: 121–124

    Google Scholar 

  • Cerniglia CE, Gibson DT & Van Baalen C (1982) Aromatic hydrocarbon oxidation by diatoms isolated from the Kachemak Bay region of Alaska. J. Gen. Microbiol. 128: 987–990

    Google Scholar 

  • Cerniglia CE, Althaus JR, Evans FE, Freeman JP, Mitchum RK & Yang SK (1983a) Stereochemistry and evidence for an arene-oxide-NIH shift pathway in the fungal metabolism of naphthalene. Chem.-Biol. Interact. 44: 119–132

    Google Scholar 

  • Cerniglia CE, Fu PP & Yang SK (1983b) Regio- and stereoselective metabolism of 4-methylbenz[a]anthracene by the fungus Cunninghamella elegans. Biochem. J. 216: 377–384

    Google Scholar 

  • Cerniglia CE, Freeman JP & Evans FE (1984) Evidence for an arene oxide-NIH shift pathway in the transformation of naphthalene to 1-naphthol in Bacillus cereus. Arch. Microbiol. 138: 283–286

    Google Scholar 

  • Cerniglia CE, White GL & Heflich RH (1985a) Fungal metabolism and detoxification of polycyclic aromatic hydrocarbons. Arch. Microbiol. 143: 105–110

    Google Scholar 

  • Cerniglia CE, Freeman JP, White GL, Heflich RH & Miller DW (1985b) Fungal metabolism and detoxification of the nitropolycyclic aromatic hydrocarbon, 1-nitropyrene. Appl. Environ. Microbiol. 50: 649–655

    Google Scholar 

  • Cerniglia CE, Kelly DW, Freeman JP & Miller DW (1986) Microbial metabolism of pyrene. Chem.-Biol. Interact. 57: 203–216

    Google Scholar 

  • Cerniglia CE, Campbell WL, Freeman JP & Evans FE (1989) Metabolism of phenanthrene by the fungus Cunninghamella elegans: identification of a novel metabolite. Appl. Environ. Microbiol. 55: 2275–2279

    Google Scholar 

  • Cerniglia CE, Campbell WL, Fu PP, Freeman JP & Evans FE (1990) Stereoselective fungal metabolism of methylated anthracenes. Appl. Environ. Microbiol. 56: 661–668

    Google Scholar 

  • Cerniglia CE, Sutherland JB & Crow SA (1992) Fungal metabolism of aromatic hydrocarbons. In: Winkelmann G (Ed) Microbial Degradation of Natural Products (pp 193–217). VCH Press, Weinheim

    Google Scholar 

  • Chapman PJ (1979) Degradation mechanisms In: Bourquin AW & Pritchard PH (Eds) Proceedings of the workshop: Microbial Degradation of Pollutants in Marine Environments (pp 28–66). U.S. Environmental Protection Agency, Gulf Breeze, FL

    Google Scholar 

  • Cody TE, Radike MJ & Warshawsky D (1984) The phytotoxicity of benzo[a]pyrene in the green alga, Selenastrum capricornutum. Environ. Res. 35: 122–131

    Google Scholar 

  • Colby J & Dalton H (1976) Some properties of a soluble methane monooxygenase from Methylococcus capsulatus strain Bath. Biochem. J. 157: 495–497

    Google Scholar 

  • Colby J, Stirling DI & Dalton H (1977) The soluble methane monooxygenase of Methylococcus capsulatus (Bath): its ability to oxygenate n-alkanes, n-alkenes, ethers and alicyclic, aromatic and heterocyclic compounds. Biochem. J. 165: 395–402

    Google Scholar 

  • Colby J, Stirling DI & Dalton H (1978) Resolution of the methane monooxygenase of Methylococcus capsulatus (Bath) into three components. Purification and properties of component C, a flavoprotein. Biochem. J. 171: 461–468

    Google Scholar 

  • Colla A, Fiecchi A & Treccani V (1959) Ricerche sul metabolismo ossidativo microbico dell'antracene e del fenantrene. Ann. Microbiol. 9: 87–91

    Google Scholar 

  • Connors MA & Barnsley EA (1982) Naphhalene plasmids in pseudomonads. J. Bacteriol. 149: 1096–1101

    Google Scholar 

  • Dagley S (1971) Catabolism of aromatic compounds by microorganisms. Adv. Microb. Physiol. 6: 1–46

    Google Scholar 

  • Dagley S (1975) A biochemical approach to some problems of environmental pollution. Essays Biochem. 11: 81–138

    Google Scholar 

  • Dalton H, Golding BT, Waters BW, Higgins R & Taylor JA (1981) Oxidations of cyclopropane, methylcyclopropane, and arenes with the mono-oxygenase system from Methylococcus capsulatus. J. Chem. Soc. Chem. Commun. 1981: 482–483

    Google Scholar 

  • Davies JI & Evans WC (1964) Oxidative metabolism of naphthalene by soil pseudomonads Biochem. J. 91: 251–261

    Google Scholar 

  • Dipple A, Cheng SC & Bigger CAH (1990) Polycyclic aromatic hydrocarbon carcinogens In: Pariza MW, Aeschbacher HU, Felton JS & Sato S (Eds) Mutagens and Carcinogens in the Diet (pp 109–127). Wiley-Liss, New York

    Google Scholar 

  • Dua RD & Meera S (1981) Purification and characterization of naphthalene oxygenase from Corynebacterium renale. Eur. J. Biochem. 120: 461–465

    Google Scholar 

  • Dunn NW & Gunsalus IC (1973) Transmissible plasmid coding early enzymes of naphthalene oxidation in Pseudomonas putida. J. Bacteriol. 114: 974–979.

    Google Scholar 

  • Ellis B, Harold P & Kronberg H (1991) Bioremediation of a creosote contaminated site. Environ. Technol. 12: 447–459

    Google Scholar 

  • Ensley BD & Gibson DT (1983) Oxidation of naphthalene by a multicomponent enzyme system from Pseudomonas sp. strain NCIB 9816. J. Bacteriol. 155: 505–511

    Google Scholar 

  • Ensley BD, Gibson DT & LaBorde LA (1982) Naphthalene dioxygenase: purification and properties of a termined oxygen component. J. Bacteriol. 149: 948–954

    Google Scholar 

  • Ensley BD, Osslund TD, Joyce M & Simon MJ (1987) Expression and complementation of naphthalene dioxygenase activity in Escherichia coli. In: Hagedorn SR Hanson RS &Kunz DA (Eds) Microbial Metabolism and the Carbon Cycle (pp 437–455). Harwood Academic Publishers, New York

    Google Scholar 

  • Evans WC, Fernley HN & Griffiths E (1965) Oxidative metabolism of phenanthrene and anthracene by soil pseudomonads; the ring fission mechanism. Biochem. J. 95: 819–821

    Google Scholar 

  • Ferris JP, Fasco MJ, Stylianopoulou FL, Jerina DM, Daly JW & Jeffrey AM (1973) Mono-oxygenase activity in Cunninghamella bainieri: Evidence for a fungal system similar to liver microsomes. Arch. Biochem. Biophys. 156: 97–103

    Google Scholar 

  • Field JA, DeJong E, Costa GF & DeBont JAM (1992) Biodegradation of polycyclic aromatic hydrocarbons by new isolates of white rot fungi. Appl. Environ. Microbiol. 58: 2219–2226

    Google Scholar 

  • Foght JM & Westlake DWS (1988) Degradation of polycyclic aromatic hydrocarbons and aromatic heterocycles by a Pseudomonas species. Can. J. Microbiol. 34: 1135–1141

    Google Scholar 

  • Garcia-Valdes E, Cozar E, Rotger R, Lalucat J & Ursing J (1988) New naphthalene-degrading marine Pseudomonas strains. Apl. Environ. Microbiol. 54: 2478–2485

    Google Scholar 

  • Ghosh DK & Mishra AK (1983) Oxidation of phenanthrene by a strain of Micrococcus: evidence of protocatechuate pathway. Curr. Microbiol. 9: 219–224

    Google Scholar 

  • Ghosh DK, Dutta D, Samanta TB & Mishra AK (1983) Microsomal benzo[a]pyrene hydroxylase in Aspergillus ochraceus TS: Assay and characterization of the enzyme system. Biochem. Biophys. Res. Commun. 113: 497–505

    Google Scholar 

  • Gibson DT & Subramanian V (1984) Microbial degradation of aromatic hydrocarbons. In: Gibson DT (Ed). Microbial Degradation of Organic Compounds (pp 181–252). Marcel Dekker, New York

    Google Scholar 

  • Gibson DT, Koch JR & Kallio RE (1968) Oxidative degradation of aromatic hydrocarbons by microorganisms. I. Enzymatic formation of catechol from benzene. Biochemistry 7: 2653–2661

    Google Scholar 

  • Gibson DT, Mahadevan V, Jerina DM, Yagi H & Yeh HJC (1975) Oxidation of the carcinogens benzo[a]pyrene and benz[a]anthracene to dihrdrodiols by a bacterium. Science 189: 295–297

    Google Scholar 

  • Gibson DT, Zylstra GJ & Chauhan S (1990) Biotransformations catalyzed by toluene dioxygenase from Pseudomonas putida F1 In: Silver S, Chakrabarty AM, Iglewski B & Kaplan S (Eds) Pseudomonas: Biotransformations, Pathogenesis, and Evolving Biotechnology (pp 121–132). American Society for Microbiology, Washington, DC

    Google Scholar 

  • Giger W & Blumer M (1974) Polycyclic aromatic hydrocarbons in the environment; isolation and characterization by chromatography, visible, ultraviolet and mass spectrometry. Anal. Chem. 46: 1663–1671

    Google Scholar 

  • Gold MH, Wariishi H & Valli K (1989) Extracellular peroxidases involved in lignin degradation by the white rot basidiomycete Phanerochaete chrysosporium. In: Whitaker JR & Sonnet PE (Eds) Biocatalysis in Agricultural Biotechnology (pp 127–140). American Chemical Society, Washington, DC

    Google Scholar 

  • Grbic-Galic D & Vogel TM (1987) Transformation of toluene and benzene by mixed methanogenic cultures. Appl. Environ. Microbiol. 53: 254–260

    Google Scholar 

  • Grosser RJ, Warshawsky D & Vestal JR (1991) Indigenous and enhanced mineralization of pyrene, benzo[a]pyrene and carbazole in soils. Appl. Environ. Microbiol. 57: 3462–3469

    Google Scholar 

  • Grund E, Denecke B & Eichenlaub R (1992) Naphthalene degradation via salicylate and gentisate by Rhodococcus sp. strain B4. Appl. Environ. Microbiol. 58: 1874–1877

    Google Scholar 

  • Gschwend PM & Hites RA (1981) Fluxes of polycyclic aromatic hydrocarbons to marine and lacustrine sediments in the northeastern United States. Geochim. Cosmochim. Acta 45: 2359–2367

    Google Scholar 

  • Guerin WF & Jones GE (1988) Mineralization of phenanthrene by a Mycobacterium sp. Appl. Environ. Microbiol. 54: 937–944

    Google Scholar 

  • Guerin WF & Jones GE (1989) Estuarine ecology of phenanthrene-degrading bacteria. Estuarine Coastal Shelf Sci. 29: 115–130

    Google Scholar 

  • Haemmerli SD, Leisola MSA, Sanglard D & Fiechter A (1986) Oxidation of benzo[a]pyrene by extracellular ligninases of Phanerochaete chrysosporium: veratryl alcohol and stability of ligninase. J. Biol. Chem. 261: 6900–6903

    Google Scholar 

  • Haigler BE & Gibson DT (1990a) Purification and properties of NADH-ferredoxin NAP reductase, a component of naphthalene dioxygenase from Pseudomonas sp. strain NCIB 9816. J. Bacteriol. 172: 457–464

    Google Scholar 

  • Haigler BE & Gibson DT (1990b) Purification and properties of ferredoxin NAP, a component of naphthalene dioxygenase from Pseudomonas sp. strain NCIB 9816. J. Bacteriol. 172: 465–468

    Google Scholar 

  • Hammel KE (1989) Organopollutant degradation by ligninolytic fungi. Enzyme Microb. Technol. 11: 776–777

    Google Scholar 

  • Hammel KE, Kalyanaraman B & Kirk TK (1986) Oxidation of polycyclic aromatic hydrocarbons and dibenzo[p]dioxins by Phanerochaete chrysosporiumm. J. Biol. Chem. 261: 16948–16952

    Google Scholar 

  • Hammel KE, Green B & Gai WZ (1991) Ring fission of anthracene by a eukaryote. Proc. Natl. Acad. Sci. 88: 10605–10608

    Google Scholar 

  • Hammel KE, Gai ZG, Green B & Moen MA (1992) Oxidative degradation of phenanthrene by the ligninolytic fungus Phanerochaete chrysosporium. Appl. Environ. Microbiol. 58: 1831–1838

    Google Scholar 

  • Heitkamp MA & Cerniglia CE (1987) The effects of chemical structure and exposure on the microbial degradation of polycyclic aromatic hydrocarbons in freshwater and estuarine ecosystem. Environ. Toxicol. Chem. 6: 535–546

    Google Scholar 

  • Heitkamp MA & Cerniglia CE (1988) Mineralization of polycyclic aromatic hydrocarbons by a bacterium isolated from sediment below an oil field. Appl. Environ. Microbiol. 54: 1612–1614

    Google Scholar 

  • Heitkamp MA & Cerniglia CE (1989) Polycyclic aromatic hydrocarbon degradation by a Mycobacterium sp. in microcosms containing sediment and water from a pristine ecosystem. Appl. Environ. Microbiol. 55: 1968–1973

    Google Scholar 

  • Heitkamp MA, Freeman JP & Cerniglia CE (1987) Naphthalene biodegradation in environmental microcosms: estimates of degradation rates and characterization of metabolites. Appl. Environ. Microbiol. 53: 129–136

    Google Scholar 

  • Heitkamp MA, Franklin W & Cerniglia CE (1988) Microbial metabolism of polycyclic aromatic hydrocarbons: isolation and characterization of a pyrene-degrading bacterium. Appl. Environ. Microbiol. 54: 2556–2565

    Google Scholar 

  • Heitkamp MA, Freeman JP, Miller DW & Cerniglia CE (1991) Biodegradation of 1-nitropyrene. Arch. Microbiol. 156: 223–230

    Google Scholar 

  • Herbes SE & Schwall LR (1978) Microbial transformation of polycyclic aromatic hydrocarbons in pristine and petroleum contaminated sediments. Appl. Environ. Microbiol. 35: 306–316.

    Google Scholar 

  • Hites RA, LaFlamme RE & Farrington JW (1977) Sedimentary polycyclic aromatic hydrocarbons: the historical record. Science 198: 829–831

    Google Scholar 

  • Hites RA, LaFlamme RE & Windsor JG (1980) Polycyclic aromatic hydrocarbons in marine/aquatic sediments: their ubiquity. In: Petrakis L & Weiss FT (Eds) Petroleum in the Marine Environment (pp 289–311). Advances in Chemistry Series, American Chemical Society, Washington, DC

    Google Scholar 

  • Holland HL, Khan SH, Richards D & Riemland E (1986) Biotransformation of polycyclic aromatic compounds by fungi. Xenobiotica 16: 733–741

    Google Scholar 

  • Jacob J, Karcher W, Belliardo JJ & Wagstaffe PJ (1986) Polycyclic aromatic hydrocarbons of environmental and occupational importance. Fresenius, Z. Anal. Chem. 323: 1–10

    Google Scholar 

  • Jeffrey AM, Yeh HJC, Jerina DM, Patel RT, Davey JF & Gibson DT (1975) Initial reactions in the oxidation of naphthalene by Pseudomonas putida. Biochemistry 14: 575–584

    Google Scholar 

  • Jerina DM, Selander H, Yagi H, Wells MC, Davey JF, Mahadevan V & Gibson DT (1976) Dihydrodiols from anthracene and phenanthrene. J. Am. Chem. Soc. 98: 5988–5996

    Google Scholar 

  • Johnson AC & Larsen D (1985) The distribution of polycyclic aromatic hydrocarbons in the surficial sedimentsss of Penobscot Bay (Maine, USA) in relation to possible sources and to other sites worldwide. Mar. Environ. Res. 15: 1–16

    Google Scholar 

  • Jones KC, Stratford A, Waterhouse KS & Vogt NB (1989) Organic contaminants in Welsh soils: polynuclear aromatic hydrocarbons. Environ. Sci. Technol. 13: 540–550

    Google Scholar 

  • Keck J, Sims RC, Coover M, Park K & Symons B (1989) Evidence for cooxidation of polynuclear aromatic hydrocarbons in soil. Wat. Res. 23: 1467–1476

    Google Scholar 

  • Keith LH & Telliard WA (1979) Priority pollutants. I. A perspective view. Environ. Sci. Technol. 13: 416–423

    Google Scholar 

  • Kelley I & Cerniglia CE (1991) The metabolism of fluoranthene by a species of Mycobacterium. J. Ind. Microbiol. 7: 19–26

    Google Scholar 

  • Kelley I, Freeman JP & Cerniglia CE (1991a) Identification of metabolites from the degradation of naphthalene by a Mycobacterium sp. Biodegradation 1: 283–290

    Google Scholar 

  • Kelley I, Freeman JP, Evans FE & Cerniglia CE (1991b) Identification of a carboxylic acid metabolite from the catabolism of fluoranthene by a Mycobacterium sp. Appl. Environ. Microbiol. 57: 636–641

    Google Scholar 

  • Keuth S & Rehm H-J (1991) Biodegradation of phenanthrene by Arthrobacter polychromogenes isolated from a contaminated soil. Appl. Microbiol. Biotechnol. 34: 804–808

    Google Scholar 

  • Kiyohara H & Nagao K (1978) The catabolism of phenanthrene and naphthalene by bacteria. J. Gen. Microbiol. 105: 69–75

    Google Scholar 

  • Kiyohara H, Nagao K & Nomi R (1976) Degradation of phenanthrene through o-phthalate by an Aeromonas sp. Agric. Biol. Chem. 40: 1075–1082

    Google Scholar 

  • Kiyohara H, Nagao K, Kouno K & Yano K (1982) Phenanthrene degrading phenotype of Alcaligenes faecalis AFK2. Appl. Environ. Microbiol. 43: 458–461

    Google Scholar 

  • Kiyohara H, Takizawa N, Date H, Torigoe S & Yano K (1990) Characterization of a phenanthrene degradation plasmid from Alcaligenes faecalis AFK2. J. Ferment. Bioeng. 69: 54–56

    Google Scholar 

  • Kuhm AE, Stolz A & Knackmuss HJ (1991) Metabolism of naphthalene by the biphenyl-degrading bacterium Pseudomonas paucimobilis Q1. Biodegradation 2: 115–120

    Google Scholar 

  • LaFlamme RE & Hites RA (1978) The global distribution of polycyclic aromatic hydrocarbons in recent sediment. Geochim. Cosmochim. Acta 42: 289–303

    Google Scholar 

  • Lijinsky W (1991) The formation and occurrence of polynuclear aromatic hydrocarbons associated with food. Mutat. Res. 259: 251–261

    Google Scholar 

  • Lin WS & Kapoor M (1979) Induction of aryl hydrocarbon hydroxylase in Neurospora crassa by benzo[a]pyrene. Curr. Microbiol. 3: 177–181

    Google Scholar 

  • Lindquist B & Warshawsky D (1985) Identification of the 11,12-dihydroxybenzo[a]pyrene as a major metabolite produced by the green alga, Selenastrum capricornutum. Biochem. Biophys. Res. Commun. 130: 71–75

    Google Scholar 

  • Mahaffey WR, Gibson DT & Cerniglia CE (1988) Bacterial oxidation of chemical carcinogens: formation of polycyclic aromatic acids from benz[a]anthracene. Appl. Environ. Microbiol. 54: 2415–2423

    Google Scholar 

  • Manilal VB & Alexander M (1991) Factors affecting the microbial degradation of phenanthrene in soil. Appl. Microbiol. Biotechnol. 35: 401–405

    Google Scholar 

  • McMillan DC, Fu PP & Cerniglia CE (1987) Stereoselective fungal metabolism of 7,12-dimethylbenz[a]anthracene: identification and enantiomeric resolution of a K-region dihydrodiol. Appl. Environ. Microbiol. 53: 2560–2566

    Google Scholar 

  • McMillan DC, Fu PP, Freeman JP, Miller DW & Cerniglia CE (1988) Microbial metabolism and detoxification of 7,12-dimethylbenz[a]anthracene. J. Ind. Microbiol. 3: 211–225

    Google Scholar 

  • Means JC, Ward SG, Hassett JJ & Banwart WL (1980) Sorption of polynuclear aromatic hydrocarbons by sediments and soils. Environ. Sci. Technol. 14: 1524–1528

    Google Scholar 

  • Mihelcic JR & Luthy RG (1987) Degradation of polycyclic aromatic hydrocarbon compounds under various redox conditions in soil-water systems. Appl. Environ. Microbiol. 53: 1182–1187

    Google Scholar 

  • Mihelcic JR & Luthy RG (1988) Microbial degradation of acenaphthene and naphthalene under denitrification conditions in soil-water systems. Appl. Environ. Microbiol. 54: 1188–1198

    Google Scholar 

  • Miller EC & Miller JA (1981) Searches for ultimate chemical carcinogens and their reactions with cellular macromolecules. Cancer 47: 2327–2345

    Google Scholar 

  • Morgan P, Lewis ST & Watkinson RJ (1991) Comparison of abilities of white-rot fungi to mineralize selected xenobiotic compounds. Appl. Microbiol. Biotechnol. 34: 693–696

    Google Scholar 

  • Mueller JG, Chapman PJ & Pritchard PH (1989) Action of a fluoranthene-utilizing bacterial community on polycyclic aromatic hydrocarbon components of creosote. Appl. Environ. Microbiol. 55: 3085–3090

    Google Scholar 

  • Mueller JG, Chapman PJ, Blattmann BO & Pritchard PH (1990) Isolation and characterization of a fluoranthene-utilizing strain of Pseudomonas paucimobilis. Appl. Environ. Microbiol. 56: 1079–1086

    Google Scholar 

  • Narro ML, Cerniglia CE, Van Baalen C & Gibson DT (1992a) Evidence of NIH shift in naphthalene oxidation by the marine cyanobacterium, Oscillatoria species strain JCM. Appl. Environ. Microbiol. 58: 1360–1363

    Google Scholar 

  • Narro ML, Cerniglia CE, Van Baalen C & Gibson DT (1992b) Metabolism of phenanthrene by the marine cyanobacterium Agmenellum quadruplicatum, strain PR-6. Appl. Environ. Microbiol. 58: 1351–1359

    Google Scholar 

  • Park KS, Sims RC, Dupont RR, Doucette WJ & Matthews JE (1990) Fate of PAH compounds in two soil types: influence of volatilization, abiotic loss and biological activity. Environ. Toxicol. Chem. 9: 187–195

    Google Scholar 

  • Patel TR & Gibson DT (1974) Purification and properties of (+)-cis-naphthalene dihydrodiol dehydrogenase of Pseudomonas putida. J. Bacteriol. 119: 879–888

    Google Scholar 

  • Pothuluri JV, Freeman JP, Evans FE & Cerniglia CE (1990) Fungal transformation of fluoranthene. Appl. Environ. Microbiol. 56: 2974–2983

    Google Scholar 

  • Pothuluri JV, Heflich RH, Fu PP & Cerniglia CE (1992a) Fungal metabolism and detoxification of fluoranthene. Appl. Environ. Microbiol. 58: 937–941

    Google Scholar 

  • Pothuluri JV, Freeman JP, Evans FE & Cerniglia CE (1992b) Fungal metabolism of acenaphthene by Cunninghamella elegans. Appl. Environ. Microbiol. 58: 3654–3659

    Google Scholar 

  • Ryu BH, Oh YK & Bin JH (1989) Biodegradation of naphthalene by Acinetobacter calcoaceticus R-88. J. Kor. Agric. Chem. Soc. 32: 315–320

    Google Scholar 

  • Sanglard D, Leisola MSA & Fiechter A (1986) Role of extracellular ligninases in biodegradation of benzo[a]pyrene by Phanerochaete chrysosporium. Enzyme Microb. Technol. 8: 209–212

    Google Scholar 

  • Savino A & Lollini MN (1977) Identification of some fermentation products of phenanthrene in microorganisms of the genus Arthrobacter. Boll. Soc. Ital. Biol. Sper. 53: 916–921

    Google Scholar 

  • Schell MA (1983) Cloning and expression in Escherichia coli of the naphthalene degradative genes from plasmid NAH7. J. Bacteriol. 153: 822–829

    Google Scholar 

  • Schocken MJ & Gibson DT (1984) Bacterial oxidation of the polycyclic aromatic hydrocarbons acenaphthene and acenaphthylene. Appl. Environ. Microbiol. 48: 10–16

    Google Scholar 

  • Serdar CM & Gibson DT (1989) Studies of nucleotide sequence homology between naphthalene-utilizing strains of bacteria. Biochem. Biophys. Res. Commun. 164: 772–779

    Google Scholar 

  • Shiaris MP (1989) Phenanthrene mineralization along a natural salinity gradient in an urban estuary, Boston Harbor, Massachusetts. Microb. Ecol. 18: 135–146

    Google Scholar 

  • Simon MJ, Osslund TD, Saunders R, Ensley BD, Suen W-C, Cruden DL, Gibson DT & Zylstra GJ (1992) Nucleotide sequences encoding the genes for naphthalene dioxygenase in Pseudomonas putida G7 and Pseudomonas sp. NCIB 9816-4. Gene (in press)

  • Sims JL, Sims RC & Matthews JE (1990) Approach to bioremediation of contaminated soil. Haz. Waste Haz. Mater. 7: 117–149

    Google Scholar 

  • Smith RV & Rosazza JP (1974) Microbial models of mammalian metabolism. Aromatic hydroxylation. Arch. Biochem. Biophys. 161: 551–558

    Google Scholar 

  • Sutherland JB (1992) Detoxification of polycyclic aromatic hydrocarbons by fungi. J. Ind. Microbiol. 9: 53–62

    Google Scholar 

  • Sutherland JB, Freeman JP, Selby AL, Fu PP, Miller DW & Cerniglia CE (1990) Stereoselective formation of a K-region dihydrodiol from phenanthrene by Streptomyces flavorirens. Arch. Microbiol. 154: 260–266

    Google Scholar 

  • Sutherland JB, Selby AL, Freeman JP, Evans FE & Cerniglia CE (1991) Metabolism of phenanthrene by Phanerochaete chrysosporium. Appl. Environ. Microbiol. 57: 3310–3316

    Google Scholar 

  • Sutherland JB, Selby AL, Freeman JP, Fu PP, Miller DW & Cerniglia CE (1992) Identification of xyloside conjugates formed from anthracene by Rhizoctonia solani. Mycol. Res. 96: 509–517

    Google Scholar 

  • Tagger S, Truffaut N & Le Petit J (1990) Preliminary study on relationships among strains forming a bacterial community selected on naphthalene from marine sediment. Can. J. Microbiol. 36: 676–681

    Google Scholar 

  • Tattersfield F (1927) The decomposition of naphthalene in the soil and the effect upon its insecticidal action. Ann. Appl. Biol. 15: 57–67

    Google Scholar 

  • Tausson WO (1927) Napthalin als Kohlenstoffquelle für Bakterien. Planta 4: 214–256

    Google Scholar 

  • Thakker DR, Yagi H, Levin W, Wood AW, Conney AH & Jerina DM (1985) Polycyclic aromatic hydrocarbons: Metabolic activation to ultimate carcinogens. In: Anders MW (Ed) Bioactivation of Foreign Compounds (pp 177–242). Academic Press, Orlando

    Google Scholar 

  • Treccani V, Walker N & Wiltshire GH (1954) The metabolism of naphthalene by soil bacteria. J. Gen. Microbiol. 11: 341–348

    Google Scholar 

  • Trower MK, Sariaslani FS & Kitson FG (1988) Xenobiotic oxidation by cytochrome P-450-enriched extracts of Streptomyces griseus. Biochem. Biophys. Res. Commun. 3: 1417–1422

    Google Scholar 

  • Utkin IB, Yakimov MM, Matveeva LN, Kozlyak EI, Rogozhin IS, Solomon ZG & Bezborodov AM (1990) Catabolism of naphthalene and salicylate by Pseudomonas fluorescens. Folia Microbiol. 35: 557–560

    Google Scholar 

  • Vogel TM & Grbic-Galic D (1986) Incorporation of oxygen from water into toluene and benzene during anaerobic fermentative transformation. Appl. Environ. Microbiol. 52: 200–202

    Google Scholar 

  • Walter U, Beyer M, Klein J & Rehm H-J (1991) Degradation of pyrene by Rhodococcus sp. UW1. Appl. Microbiol. Biotechnol. 34: 671–676

    Google Scholar 

  • Wang X, Yu X & Bartha R (1990) Effect of bioremediation on polycyclic aromatic hydrocarbon residues in soil. Environ. Sci. Technol. 24: 1086–1089

    Google Scholar 

  • Warshawsky D, Radike M, Jayasimhulu K & Cody T (1988) Metabolism of benzo[a]pyrene by a dioxygenase enzyme system of the freshwater green alga Selenastrum capricornutum. Biochem. Biophys. Res. Commun. 152: 540–544

    Google Scholar 

  • Warshawsky D, Keenan TM, Reilman R, Cody TE & Radike MJ (1990) Conjugation of benzo[a]pyrene metabolites by the freshwater green alga Selenastrum capricornutum. Chem.- Biol. Interact. 73: 93–105

    Google Scholar 

  • Weissenfels WD, Beyer M & Klein J (1990) Degradation of phenanthrene, fluorene and fluoranthene by pure bacterial cultures. Appl. Microbiol. Biotechnol. 32: 479–484

    Google Scholar 

  • Weissenfels WD, Beyer M, Klein J & Rehm HJ (1991) Microbial metabolism of fluoranthene: isolation and identification of ring fission products. Appl. Microbiol. Biotechnol. 34: 528–535

    Google Scholar 

  • West PA, Okpokwasili GC, Brayton PR, Grimes DJ & Colwell RR (1984) Numerical taxonomy of phenanthrene-degrading bacteria isolated from the Chesapeake Bay. Appl. Environ. Microbiol. 48: 988–993

    Google Scholar 

  • Wild SR, Berrow ML & Jones KC (1991a) The persistence of polynuclear aromatic hydrocarbons (PAHs) in sewage sludge amended agricultural soils. Environ. Pollut. 72: 141–157

    Google Scholar 

  • Wild SR, Obbard JP, Munn CI, Berrow ML & Jones KC (1991b) The long-term persistence of polynuclear aromatic hydrocarbons (PAHs) in an agricultural soil amended with metal-contaminated sewage sludges. Sci. Total Environ. 101: 235–253

    Google Scholar 

  • Williams PA (1981) Genetics of biodegradation. In: Leisinger T, Hutter R, Cook AM & Nuesch J (Eds) Microbial Degradation of Xenobiotics and Recalcitrant Compounds (pp 97–107). Academic Press, New York

    Google Scholar 

  • Wiseman A & Woods LFJ (1979) Benzo[a]pyrene metabolites formed by the action of yeast cytochrome P-450/P-448. J. Chem. Technol. Biotechnol. 29: 320–324

    Google Scholar 

  • Yen KM & Gunsalus IC (1982) Plasmid gene organization: naphthalene/salicylate oxidation. Proc. Natl. Acad. Sci. U.S.A. 79: 874–878

    Google Scholar 

  • Yen KM & Serdar CM (1988) Genetics of naphthalene catabolism in Pseudomonads. CRC Crit. Rev. Microbiol. 15: 247–267

    Google Scholar 

  • Zylstra GJ & Gibson DT (1991) Aromatic hydrocarbon degradation: a molecular approach. In: Setlow JK (Ed) Genetic Engineering: Principles and Methods, Vol 13 (pp 183–203). Plenum Press, New York

    Google Scholar 

  • Zylstra GJ, Chauhan S & Gibson DT (1990) Degradation of chlorinated biphenyls by Escherichia coli containing cloned genes of the Pseudomonas putida F1 toluene catabolic pathway. In: Proceedings of the Sixteenth Annual Hazardous Waste Research Symposium: Remedial Action, Treatment, and Disposal of Hazardous Waste (pp 290–302). (EPA/600/9-90/037)

  • Zylstra GJ, Cuskey SM & Olsen RH (1991) Construction of plasmids for use in risk assessment research. In: Levin MA, Seidler RJ & Rogul M (Eds) Microbial Ecology: Principles, Methods, and Applications (pp 363–370). McGraw-Hill, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cerniglia, C.E. Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation 3, 351–368 (1992). https://doi.org/10.1007/BF00129093

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00129093

Key words

Navigation